GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Adjoint sensitivity  (1)
  • Air-sea gas exchange  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C12020, doi:10.1029/2011JC006998.
    Description: A three dimensional model of Arctic Ocean circulation and mixing, with a horizontal resolution of 18 km, is overlain by a biogeochemical model resolving the physical, chemical and biological transport and transformations of phosphorus, alkalinity, oxygen and carbon, including the air-sea exchange of dissolved gases and the riverine delivery of dissolved organic carbon. The model qualitatively captures the observed regional and seasonal trends in surface ocean PO4, dissolved inorganic carbon, total alkalinity, and pCO2. Integrated annually, over the basin, the model suggests a net annual uptake of 59 Tg C a−1, within the range of published estimates based on the extrapolation of local observations (20–199 Tg C a−1). This flux is attributable to the cooling (increasing solubility) of waters moving into the basin, mainly from the subpolar North Atlantic. The air-sea flux is regulated seasonally and regionally by sea-ice cover, which modulates both air-sea gas transfer and the photosynthetic production of organic matter, and by the delivery of riverine dissolved organic carbon (RDOC), which drive the regional contrasts in pCO2 between Eurasian and North American coastal waters. Integrated over the basin, the delivery and remineralization of RDOC reduces the net oceanic CO2 uptake by ~10%.
    Description: This study has been carried out as part of ECCO2 and SASS (Synthesis of the Arctic System Science) projects funded by NASA and NSF, respectively. MM and MJF are grateful for support from the National Science Foundation (ARC-0531119 and ARC-0806229) for financial support. MM also acknowledges NASA for providing computer time, the use of the computing facilities at NAS center and also the Scripps post-doctoral program for further financial support that helped to complete the manuscript. RMK also acknowledges NOAA for support (NA08OAR4310820 and NA08OAR4320752).
    Description: 2012-06-15
    Keywords: Air-sea gas exchange ; Biogeochemical cycles ; Land-ocean coupling ; Numerical modeling ; Ocean carbon cycle ; Polar oceans
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wang, O., Lee, T., Piecuch, C., Fukumori, I., Fenty, I., Frederikse, T., Menemenlis, D., Ponte, R., & Zhang, H. Local and remote forcing of interannual sea‐level variability at Nantucket Island. Journal of Geophysical Research: Oceans, 127(6), (2022): e2021JC018275, https://doi.org/10.1029/2021jc018275.
    Description: The relative contributions of local and remote wind stress and air-sea buoyancy forcing to sea-level variations along the East Coast of the United States are not well quantified, hindering the understanding of sea-level predictability there. Here, we use an adjoint sensitivity analysis together with an Estimating the Circulation and Climate of the Ocean (ECCO) ocean state estimate to establish the causality of interannual variations in Nantucket dynamic sea level. Wind forcing explains 67% of the Nantucket interannual sea-level variance, while wind and buoyancy forcing together explain 97% of the variance. Wind stress contribution is near-local, primarily from the New England shelf northeast of Nantucket. We disprove a previous hypothesis about Labrador Sea wind stress being an important driver of Nantucket sea-level variations. Buoyancy forcing, as important as wind stress in some years, includes local contributions as well as remote contributions from the subpolar North Atlantic that influence Nantucket sea level a few years later. Our rigorous adjoint-based analysis corroborates previous correlation-based studies indicating that sea-level variations in the subpolar gyre and along the United States northeast coast can both be influenced by subpolar buoyancy forcing. Forward perturbation experiments further indicate remote buoyancy forcing affects Nantucket sea level mostly through slow advective processes, although coastally trapped waves can cause rapid Nantucket sea level response within a few weeks.
    Description: This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). CGP was supported by NASA Sea Level Change Team awards 80NSSC20K1241 and 80NM0018D0004.
    Keywords: Sea level ; Adjoint sensitivity ; Forcing mechanism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...