GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Abrupt climate change  (1)
  • Circulation/ Dynamics  (1)
  • Climate models  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 29 (2016): 6201-6221, doi:10.1175/JCLI-D-15-0694.1.
    Description: Anomalous conditions in the tropical oceans, such as those related to El Niño–Southern Oscillation and the Indian Ocean dipole, have been previously blamed for extended droughts and wet periods in Australia. Yet the extent to which Australian wet and dry spells can be driven by internal atmospheric variability remains unclear. Natural variability experiments are examined to determine whether prolonged extreme wet and dry periods can arise from internal atmospheric and land variability alone. Results reveal that this is indeed the case; however, these dry and wet events are found to be less severe than in simulations incorporating coupled oceanic variability. Overall, ocean feedback processes increase the magnitude of Australian rainfall variability by about 30% and give rise to more spatially coherent rainfall impacts. Over mainland Australia, ocean interactions lead to more frequent extreme events, particularly during the rainy season. Over Tasmania, in contrast, ocean–atmosphere coupling increases mean rainfall throughout the year. While ocean variability makes Australian rainfall anomalies more severe, droughts and wet spells of duration longer than three years are equally likely to occur in both atmospheric- and ocean-driven simulations. Moreover, they are essentially indistinguishable from what one expects from a Gaussian white noise distribution. Internal atmosphere–land-driven megadroughts and megapluvials that last as long as ocean-driven events are also identified in the simulations. This suggests that oceanic variability may be less important than previously assumed for the long-term persistence of Australian rainfall anomalies. This poses a challenge to accurate prediction of long-term dry and wet spells for Australia.
    Description: This study was supported by the Australian Research Council (ARC) under ARC-DP1094784, ARC-DP-150101331, ARC-FL100100214, and funding for C.C.U. from the National Science Foundation under AGS-1602455 and the ARC Centre of Excellence for Climate System Science.
    Description: 2017-02-19
    Keywords: Circulation/ Dynamics ; Atmosphere-ocean interaction ; Atm/Ocean Structure/ Phenomena ; Drought ; Precipitation ; Physical Meteorology and Climatology ; Climate variability ; Forecasting ; Climate prediction ; Variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 2861–2885, doi:10.1175/JCLI-D-13-00437.1.
    Description: The representation of the El Niño–Southern Oscillation (ENSO) under historical forcing and future projections is analyzed in 34 models from the Coupled Model Intercomparison Project phase 5 (CMIP5). Most models realistically simulate the observed intensity and location of maximum sea surface temperature (SST) anomalies during ENSO events. However, there exist systematic biases in the westward extent of ENSO-related SST anomalies, driven by unrealistic westward displacement and enhancement of the equatorial wind stress in the western Pacific. Almost all CMIP5 models capture the observed asymmetry in magnitude between the warm and cold events (i.e., El Niños are stronger than La Niñas) and between the two types of El Niños: that is, cold tongue (CT) El Niños are stronger than warm pool (WP) El Niños. However, most models fail to reproduce the asymmetry between the two types of La Niñas, with CT stronger than WP events, which is opposite to observations. Most models capture the observed peak in ENSO amplitude around December; however, the seasonal evolution of ENSO has a large range of behavior across the models. The CMIP5 models generally reproduce the duration of CT El Niños but have biases in the evolution of the other types of events. The evolution of WP El Niños suggests that the decay of this event occurs through heat content discharge in the models rather than the advection of SST via anomalous zonal currents, as seems to occur in observations. No consistent changes are seen across the models in the location and magnitude of maximum SST anomalies, frequency, or temporal evolution of these events in a warmer world.
    Description: 2014-10-15
    Keywords: Atmosphere-ocean interaction ; Climate change ; Climate variability ; ENSO ; Climate models ; Model evaluation/performance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 10,382–10,390, doi:10.1002/2015GL066344.
    Description: North Atlantic late Pleistocene climate (60,000 to 11,650 years ago) was characterized by abrupt and extreme millennial duration oscillations known as Dansgaard-Oeschger (D-O) events. However, during the Last Glacial Maximum (LGM) 23,000 to 19,000 cal years ago (23 to 19 ka), no D-O events are observed in the Greenland ice cores. Our new analysis of the Greenland δ18O record reveals a switch in the stability of the climate system around 30 ka, suggesting that a critical threshold was passed. Climate system modeling suggests that low axial obliquity at this time caused vastly expanded sea ice in the Labrador Sea, shifting Northern Hemisphere westerly winds south and reducing the strength of meridional overturning circulation. The results suggest that these feedbacks tipped the climate system into full glacial conditions, leading to maximum continental ice growth during the LGM.
    Description: Australian Research Council
    Description: 2016-06-10
    Keywords: Late Pleistocene ; Abrupt climate change ; Geochronology ; Tipping point ; Meridional overturning circulation ; Greenland ice cores
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...