GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AUV  (2)
  • Antarctica  (1)
  • Computer vision  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B. V. for personal use, not for redistribution. The definitive version was published in Continental Shelf Research 26 (2006): 194-205, doi:10.1016/j.csr.2005.10.004.
    Description: The benthic communities of the deep insular shelf at the Hind Bank Marine Conservation District (MCD), an important spawning grouper aggregation site, were studied with the Seabed autonomous underwater vehicle (AUV) at depths between 32 to 54 m. Four digital phototransects provided data on benthic species composition and abundance of the insular shelf off St. Thomas, U.S. Virgin Islands. Within the western side of the MCD, well developed coral reefs with 43% mean living coral cover were found. The Montastrea annularis complex was dominant at all four sites between 33 to 47 m, the depth range where reefs were present. Maximum coral cover found was 70% at depths of 38 to 40 m. Quantitative determinations of sessile-benthic populations, as well as the presence of motile-megabenthic invertebrates and algae were obtained. The Seabed AUV provided new quantitative and descriptive information of a unique coral reef habitat found within this deeper insular shelf area.
    Description: Funding was provided in part by the CenSSIS ERC of the National Science Foundation under grant EEC-9986821 and by the Caribbean Fishery Management Council. University of the Virgin Islands staff time was supported by a grant from Sea Grant (R-101-1-02) to R. Nemeth.
    Keywords: Atlantic ; U.S. Virgin Islands ; Coral reef ; Deep hermatypic corals ; AUV
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 907575 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 267 (2008): 341-352, doi:10.1016/j.epsl.2007.11.053.
    Description: Detailed near-bottom investigation of a series of giant, kilometer scale, elongate pockmarks along the edge of the mid-Atlantic continental shelf confirms that methane is actively venting at the site. Dissolved methane concentrations, which were measured with a commercially available methane sensor (METS) designed by Franatech GmbH mounted on an autonomous underwater vehicle (AUV), are as high as 100 nM. These values are well above expected background levels (1-4 nM) for the open ocean. Sediment pore water geochemistry gives further evidence of methane advection through the seafloor. Isotopically light carbon in the dissolved methane samples indicates a primarily biogenic source. The spatial distribution of the near-bottom methane anomalies (concentrations above open ocean background), combined with water column salinity and temperature vertical profiles, indicate that methane-rich water is not present across the entire width of the pockmarks, but is laterally restricted to their edges. We suggest that venting is primarily along the top of the pockmark walls with some advection and dispersion due to local currents. The highest methane concentrations observed with the METS sensor occur at a small, circular pockmark at the southern end of the study area. This observation is compatible with a scenario where the larger, elongate pockmarks evolve through coalescing smaller pockmarks.
    Description: This work was supported by NSF grants OCE- 0242426, OCE-0242804 and OCDE-0242449 and ONR grant N00014-02-1-0691.
    Keywords: Pockmarks ; Seafloor venting ; Methane ; AUV
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © IEEE, 2008. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Oceanic Engineering 33 (2008): 103-122, doi:10.1109/JOE.2008.923547.
    Description: As autonomous underwater vehicles (AUVs) are becoming routinely used in an exploratory context for ocean science, the goal of visually augmented navigation (VAN) is to improve the near-seafloor navigation precision of such vehicles without imposing the burden of having to deploy additional infrastructure. This is in contrast to traditional acoustic long baseline navigation techniques, which require the deployment, calibration, and eventual recovery of a transponder network. To achieve this goal, VAN is formulated within a vision-based simultaneous localization and mapping (SLAM) framework that exploits the systems-level complementary aspects of a camera and strap-down sensor suite. The result is an environmentally based navigation technique robust to the peculiarities of low-overlap underwater imagery. The method employs a view-based representation where camera-derived relative-pose measurements provide spatial constraints, which enforce trajectory consistency and also serve as a mechanism for loop closure, allowing for error growth to be independent of time for revisited imagery. This article outlines the multisensor VAN framework and demonstrates it to have compelling advantages over a purely vision-only approach by: 1) improving the robustness of low-overlap underwater image registration; 2) setting the free gauge scale; and 3) allowing for a disconnected camera-constraint topology.
    Keywords: Computer vision ; Navigation ; Mobile robotics ; Underwater vehicles ; SLAM ; Robotic perception
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecosphere 8 (2017): 10.1002/ecs2.2017, doi:10.1002/ecs2.2017.
    Description: Historically low temperatures have severely limited skeleton-breaking predation on the Antarctic shelf, facilitating the evolution of a benthic fauna poorly defended against durophagy. Now, rapid warming of the Southern Ocean is restructuring Antarctic marine ecosystems as conditions become favorable for range expansions. Populations of the lithodid crab Paralomis birsteini currently inhabit some areas of the continental slope off Antarctica. They could potentially expand along the slope and upward to the outer continental shelf, where temperatures are no longer prohibitively low. We identified two sites inhabited by different densities of lithodids in the slope environment along the western Antarctic Peninsula. Analysis of the gut contents of P. birsteini trapped on the slope revealed them to be opportunistic invertivores. The abundances of three commonly eaten, eurybathic taxa—ophiuroids, echinoids, and gastropods—were negatively associated with P. birsteini off Marguerite Bay, where lithodid densities averaged 4280 ind/km2 at depths of 1100–1499 m (range 3440–5010 ind/km2), but not off Anvers Island, where lithodid densities were lower, averaging 2060 ind/km2 at these depths (range 660–3270 ind/km2). Higher abundances of lithodids appear to exert a negative effect on invertebrate distribution on the slope. Lateral or vertical range expansions of P. birsteini at sufficient densities could substantially reduce populations of their benthic prey off Antarctica, potentially exacerbating the direct impacts of rising temperatures on the distribution and diversity of the contemporary shelf benthos.
    Description: Division of Polar Programs Grant Numbers: ANT-0838466, ANT-0838844, ANT-1141877, ANT-1141896; Vetenskapsrådet Grant Number: 824-2008-6429; H2020 Marie Skłodowska-Curie Actions Grant Number: 704895; U.S. National Science Foundation; European Commission; University of Alabama at Birmingham
    Keywords: Antarctica ; Bathyal ; Benthic ; Climate change ; Echinoidea ; Lithodidae ; Ophiuroidea ; Paralomis ; Polar emergence ; Predation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...