GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • BIOACID; Biological Impacts of Ocean Acidification  (10)
  • Binary Object; BIOACID; Biological Impacts of Ocean Acidification; Figure; File content  (3)
  • AA; Ammonium; Autoanalyzer; BIOACID; Biogenic silica; Biological Impacts of Ocean Acidification; Calculated; Calculated, see reference(s); Carbon, inorganic, dissolved; Carbon, organic, dissolved; Carbon, total, particulate; Carbon/Nitrogen ratio; Carbon analyser; Chlorophyll a; CN-analyser; Coulometric titration; DATE/TIME; Day of experiment; Event label; Fluorometric; Gullmar Fjord, Skagerrak, Sweden; Hand-operated CTD (Sea&Sun Technology, CTD 60M); High Performance Liquid Chromatography (HPLC); KOSMOS_2013_Mesocosm-M1; KOSMOS_2013_Mesocosm-M10; KOSMOS_2013_Mesocosm-M2; KOSMOS_2013_Mesocosm-M3; KOSMOS_2013_Mesocosm-M4; KOSMOS_2013_Mesocosm-M5; KOSMOS_2013_Mesocosm-M6; KOSMOS_2013_Mesocosm-M7; KOSMOS_2013_Mesocosm-M8; KOSMOS_2013_Mesocosm-M9; KOSMOS 2013; MESO; Mesocosm experiment; Mesocosm label; Mesozooplankton, biomass as carbon; Mesozooplankton, biomass as nitrogen; Mesozooplankton, biomass as phosphorus; Nitrate and Nitrite; Nitrogen, organic, dissolved; Nitrogen, total, particulate; Nitrogen, total dissolved; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Phosphate; Phosphorus, organic, dissolved; Phosphorus, particulate; Phosphorus, total dissolved; Salinity; Silicate; Spectrophotometry; Temperature, water; Vertical flux, biogenic silica; Vertical flux, biogenic silica, cumulated; Vertical flux, carbon; Vertical flux, carbon, cumulated; Vertical flux, nitrogen; Vertical flux, nitrogen, cumulated; Vertical flux, phosphorus; Vertical flux, phosphorus, cumulated; Volume  (1)
Publikationsart
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Bach, Lennart Thomas; Riebesell, Ulf; Sett, Scarlett; Febin, Sarah; Rzepka, Paul; Schulz, Kai Georg (2012): An approach for particle sinking velocity measurements in the 3–400 µm size range and considerations on the effect of temperature on sinking rates. Marine Biology, 159(8), 1853-1864, https://doi.org/10.1007/s00227-012-1945-2
    Publikationsdatum: 2024-03-06
    Beschreibung: The flux of organic particles below the mixed layer is one major pathway of carbon from the surface into the deep ocean. The magnitude of this export flux depends on two major processes--remineralization rates and sinking velocities. Here, we present an efficient method to measure sinking velocities of particles in the size range from approximately 3-400 µm by means of video microscopy (FlowCAM®). The method allows rapid measurement and automated analysis of mixed samples and was tested with polystyrene beads, different phytoplankton species, and sediment trap material. Sinking velocities of polystyrene beads were close to theoretical values calculated from Stokes' Law. Sinking velocities of the investigated phytoplankton species were in reasonable agreement with published literature values and sinking velocities of material collected in sediment trap increased with particle size. Temperature had a strong effect on sinking velocities due to its influence on seawater viscosity and density. An increase in 9 °C led to a measured increase in sinking velocities of 40 %. According to this temperature effect, an average temperature increase in 2 °C as projected for the sea surface by the end of this century could increase sinking velocities by about 6 % which might have feedbacks on carbon export into the deep ocean.
    Schlagwort(e): BIOACID; Biological Impacts of Ocean Acidification
    Materialart: Dataset
    Format: application/zip, 3 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  GEOMAR - Helmholtz Centre for Ocean Research Kiel | Supplement to: Bach, Lennart Thomas; Riebesell, Ulf; Gutowska, Magdalena A; Federwisch, Luisa; Schulz, Kai Georg (2015): A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Progress in Oceanography, 135, 125-138, https://doi.org/10.1016/j.pocean.2015.04.012
    Publikationsdatum: 2024-03-06
    Beschreibung: Coccolithophores are a group of unicellular phytoplankton species whose ability to calcify has a profound influence on biogeochemical element cycling. Calcification rates are controlled by a large variety of biotic and abiotic factors. Among these factors, carbonate chemistry has gained considerable attention during the last years as coccolithophores have been identified to be particularly sensitive to ocean acidification. Despite intense research in this area, a general concept harmonizing the numerous and sometimes (seemingly) contradictory responses of coccolithophores to changing carbonate chemistry is still lacking to date. Here, we present the "substrate-inhibitor concept" which describes the dependence of calcification rates on carbonate chemistry speciation. It is based on observations that calcification rate scales positively with bicarbonate (HCO3-), the primary substrate for calcification, and carbon dioxide (CO2), which can limit cell growth, whereas it is inhibited by protons (H+). This concept was implemented in a model equation, tested against experimental data, and then applied to understand and reconcile the diverging responses of coccolithophorid calcification rates to ocean acidification obtained in culture experiments. Furthermore, we (i) discuss how other important calcification-influencing factors (e.g. temperature and light) could be implemented in our concept and (ii) embed it in Hutchinson's niche theory, thereby providing a framework for how carbonate chemistry-induced changes in calcification rates could be linked with changing coccolithophore abundance in the oceans. Our results suggest that the projected increase of H+ in the near future (next couple of thousand years), paralleled by only a minor increase of inorganic carbon substrate, could impede calcification rates if coccolithophores are unable to fully adapt. However, if calcium carbonate (CaCO3) sediment dissolution and terrestrial weathering begin to increase the oceans' HCO3- and decrease its H+ concentrations in the far future (10 -100 kyears), coccolithophores could find themselves in carbonate chemistry conditions which may be more favorable for calcification than they were before the Anthropocene.
    Schlagwort(e): BIOACID; Biological Impacts of Ocean Acidification
    Materialart: Dataset
    Format: application/zip, 3 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Horn, Henriette G; Sander, Nils; Stuhr, Annegret; Algueró-Muñiz, Maria; Bach, Lennart Thomas; Löder, Martin G J; Boersma, Maarten; Riebesell, Ulf; Aberle, Nicole (2016): Low CO2 Sensitivity of Microzooplankton Communities in the Gullmar Fjord, Skagerrak: Evidence from a Long-Term Mesocosm Study. PLoS ONE, 11(11), e0165800, https://doi.org/10.1371/journal.pone.0165800
    Publikationsdatum: 2024-03-06
    Beschreibung: Ocean acidification is considered as a crucial stressor for marine communities. In this study, we tested the effects of the IPCC RPC6.0 end-of-century acidification scenario on a natural plankton community in the Gullmar Fjord, Sweden, during a long-term mesocosm experiment from a spring bloom to a mid-summer situation. The focus of this study was on microzooplankton and its interactions with phytoplankton and mesozooplankton. The microzooplankton community was dominated by ciliates, especially small Strombidium sp., with the exception of the last days when heterotrophic dinoflagellates increased in abundance. We did not observe any effects of high CO2 on the community composition and diversity of microzooplankton. While ciliate abundance, biomass and growth rate were not affected by elevated CO2, we observed a positive effect of elevated CO2 on dinoflagellate abundances. Additionally, growth rates of dinoflagellates were significantly higher in the high CO2 treatments. Given the higher Chlorophyll a content measured under high CO2, our results point at mainly indirect effects of CO2 on microzooplankton caused by changes in phytoplankton standing stocks, in this case most likely an increase in small-sized phytoplankton of 〈8 µm. Overall, the results from the present study covering the most important part of the growing season indicate that coastal microzooplankton communities are rather robust towards realistic acidification scenarios.
    Schlagwort(e): BIOACID; Biological Impacts of Ocean Acidification
    Materialart: Dataset
    Format: application/zip, 3 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Taucher, Jan; Haunost, Mathias; Boxhammer, Tim; Bach, Lennart Thomas; Algueró-Muñiz, Maria; Riebesell, Ulf (2017): Influence of ocean acidification on plankton community structure during a winter-to-summer succession: An imaging approach indicates that copepods can benefit from elevated CO2 via indirect food web effects. PLoS ONE, 12(2), e0169737, https://doi.org/10.1371/journal.pone.0169737
    Publikationsdatum: 2024-03-06
    Beschreibung: In this study, we report from a long-term in situ mesocosm experiment, where we investigated the response of natural plankton communities in temperate waters (Gullmarfjord, Sweden) to elevated CO2 concentrations and OA as expected for the end of the century (~760 µatm pCO2). Based on a plankton-imaging approach, we examined size structure, community composition and food web characteristics of the whole plankton assemblage, ranging from picoplankton to mesozooplankton, during an entire winter-to-summer succession. The plankton imaging system revealed pronounced temporal changes in the size structure of the copepod community over the course of the plankton bloom. These observed shift towards smaller individuals resulted in an overall decrease of copepod biomass by 25%, despite increasing numerical abundances. Furthermore, we observed distinct effects of elevated CO2 on biomass and size structure of the entire plankton community. Notably, the biomass of copepods, dominated by Pseudocalanus acuspes, displayed a tendency towards elevated biomass by up to 30-40% under simulated ocean acidification. This effect was significant for certain copepod size classes and was most likely driven by CO2-stimulated responses of primary producers and a complex interplay of trophic interactions that allowed this CO2 effect to propagate up the food web.
    Schlagwort(e): BIOACID; Biological Impacts of Ocean Acidification
    Materialart: Dataset
    Format: application/zip, 4 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Bach, Lennart Thomas; Lohbeck, Kai T; Reusch, Thorsten B H; Riebesell, Ulf (2018): Rapid evolution of highly variable competitive abilities in a key phytoplankton species. Nature Ecology & Evolution, 2(4), 611-613, https://doi.org/10.1038/s41559-018-0474-x
    Publikationsdatum: 2024-03-06
    Beschreibung: Climate change challenges phytoplankton communities but evolutionary adaptation could mitigate potential impacts. Here, we tested whether adaptation to a stressor under laboratory conditions leads to equivalent fitness gains in a more natural environment. We found that fitness advantages that had evolved under laboratory conditions were masked by pleiotropic effects in natural plankton communities. Moreover, new genotypes with highly variable competitive abilities evolved on timescales significantly shorter than climate change.
    Schlagwort(e): BIOACID; Biological Impacts of Ocean Acidification
    Materialart: Dataset
    Format: application/zip, 3 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Bach, Lennart Thomas; Hernández-Hernández, Nauzet; Taucher, Jan; Spisla, Carsten; Sforna, Claudia; Riebesell, Ulf; Arístegui, Javier (2019): Effects of Elevated CO2 on a Natural Diatom Community in the Subtropical NE Atlantic. Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00075
    Publikationsdatum: 2024-03-06
    Beschreibung: Diatoms are silicifying phytoplankton contributing about one quarter to primary 79 production on Earth. Ocean acidification (OA) could alter the competitiveness of diatoms 80 relative to other taxa and/or lead to shifts among diatom species. In spring 2016, we set 81 up a plankton community experiment at the coast of Gran Canaria (Canary Islands, 82 Spain) to investigate the response of subtropical diatom assemblages to elevated 83 84 seawater pCO2.
    Schlagwort(e): BIOACID; Biological Impacts of Ocean Acidification
    Materialart: Dataset
    Format: application/zip, 5 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Zhang, Yong; Klapper, Regina; Lohbeck, Kai T; Bach, Lennart Thomas; Schulz, Kai Georg; Reusch, Thorsten B H; Riebesell, Ulf (2014): Between- and within-population variations in thermal reaction norms of the coccolithophore Emiliania huxleyi. Limnology and Oceanography, 59(5), 1570-1580, https://doi.org/10.4319/lo.2014.59.5.1570
    Publikationsdatum: 2024-03-06
    Beschreibung: Thermal reaction norms for growth rates of six Emiliania huxleyi isolates originating from the central Atlantic (Azores, Portugal) and five isolates from the coastal North Atlantic (Bergen, Norway) were assessed. We used the template mode of variation model to decompose variations in growth rates into modes of biological interest: vertical shift, horizontal shift, and generalist-specialist variation. In line with the actual habitat conditions, isolates from Bergen (Bergen population) grew well at lower temperatures, and isolates from the Azores (Azores population) performed better at higher temperatures. The optimum growth temperature of the Azores population was significantly higher than that of the Bergen population. Neutral genetic differentiation was found between populations by microsatellite analysis. These findings indicate that E. huxleyi populations are adapted to local temperature regimes. Next to between-population variation, we also found variation within populations. Genotype-by-environment interactions resulted in the most pronounced phenotypic differences when isolates were exposed to temperatures outside the range they naturally encounter. Variation in thermal reaction norms between and within populations emphasizes the importance of using more than one isolate when studying the consequences of global change on marine phytoplankton. Phenotypic plasticity and standing genetic variation will be important in determining the potential of natural E. huxleyi populations to cope with global climate change.
    Schlagwort(e): BIOACID; Biological Impacts of Ocean Acidification
    Materialart: Dataset
    Format: application/zip, 267.5 kBytes
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Boxhammer, Tim; Taucher, Jan; Bach, Lennart Thomas; Achterberg, Eric Pieter; Algueró-Muñiz, Maria; Bellworthy, Jessica; Czerny, Jan; Esposito, Mario; Haunost, Mathias; Hellemann, Dana; Ludwig, Andrea; Yong, Jaw-Chuen; Zark, Maren; Riebesell, Ulf; Anderson, Leif G (2018): Enhanced transfer of organic matter to higher trophic levels caused by ocean acidification and its implications for export production: A mass balance approach. PLoS ONE, 13(5), e0197502, https://doi.org/10.1371/journal.pone.0197502
    Publikationsdatum: 2024-03-06
    Beschreibung: The present biogeochemical parameters were measured or calculated in 2013 during a long-term mesocosm CO2 perturbation study in Gullmar Fjord (Sweden). The natural plankton community was enclosed in ten pelagic mesocosms following the natural winter-to-summer plankton succession. Five of the mesocosms were enriched with CO2 to simulate end-of the century ocean acidification (760 µatm) while the others served as controls. The data set was used for mass balance calculations to investigate the impact of realistic end-of-the-century CO2 concentrations on the development and partitioning of the carbon, nitrogen, phosphorus, and silica pools in a coastal pelagic ecosystem.
    Schlagwort(e): AA; Ammonium; Autoanalyzer; BIOACID; Biogenic silica; Biological Impacts of Ocean Acidification; Calculated; Calculated, see reference(s); Carbon, inorganic, dissolved; Carbon, organic, dissolved; Carbon, total, particulate; Carbon/Nitrogen ratio; Carbon analyser; Chlorophyll a; CN-analyser; Coulometric titration; DATE/TIME; Day of experiment; Event label; Fluorometric; Gullmar Fjord, Skagerrak, Sweden; Hand-operated CTD (Sea&Sun Technology, CTD 60M); High Performance Liquid Chromatography (HPLC); KOSMOS_2013_Mesocosm-M1; KOSMOS_2013_Mesocosm-M10; KOSMOS_2013_Mesocosm-M2; KOSMOS_2013_Mesocosm-M3; KOSMOS_2013_Mesocosm-M4; KOSMOS_2013_Mesocosm-M5; KOSMOS_2013_Mesocosm-M6; KOSMOS_2013_Mesocosm-M7; KOSMOS_2013_Mesocosm-M8; KOSMOS_2013_Mesocosm-M9; KOSMOS 2013; MESO; Mesocosm experiment; Mesocosm label; Mesozooplankton, biomass as carbon; Mesozooplankton, biomass as nitrogen; Mesozooplankton, biomass as phosphorus; Nitrate and Nitrite; Nitrogen, organic, dissolved; Nitrogen, total, particulate; Nitrogen, total dissolved; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Phosphate; Phosphorus, organic, dissolved; Phosphorus, particulate; Phosphorus, total dissolved; Salinity; Silicate; Spectrophotometry; Temperature, water; Vertical flux, biogenic silica; Vertical flux, biogenic silica, cumulated; Vertical flux, carbon; Vertical flux, carbon, cumulated; Vertical flux, nitrogen; Vertical flux, nitrogen, cumulated; Vertical flux, phosphorus; Vertical flux, phosphorus, cumulated; Volume
    Materialart: Dataset
    Format: text/tab-separated-values, 21872 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Zhang, Yong; Bach, Lennart Thomas; Lohbeck, Kai T; Schulz, Kai Georg; Listmann, Luisa; Klapper, Regina; Riebesell, Ulf (2018): Population-specific responses in physiological rates of Emiliania huxleyi to a broad CO2 range. Biogeosciences, 15(12), 3691-3701, https://doi.org/10.5194/bg-15-3691-2018
    Publikationsdatum: 2024-04-20
    Beschreibung: Although coccolithophore physiological responses to CO2-induced changes in seawater carbonate chemistry have been widely studied in the past, there is limited knowledge on the variability of physiological responses between populations from different areas. In the present study, we investigated the specific responses of growth, particulate organic (POC) and inorganic carbon (PIC) production rates of three populations of the coccolithophore Emiliania huxleyi from three regions in the North Atlantic Ocean (Azores: six strains, Canary Islands: five strains, and Norwegian coast near Bergen: six strains) to a CO2 partial pressure (pCO2) range from 120 to 2630µatm. Physiological rates of each population and individual strain increased with rising pCO2 levels, reached a maximum and declined thereafter. Optimal pCO2 for growth, POC production rates, and tolerance to low pH (i.e., high proton concentration) was significantly higher in an E. huxleyi population isolated from the Norwegian coast than in those isolated near the Azores and Canary Islands. This may be due to the large environmental variability including large pCO2 and pH fluctuations in coastal waters off Bergen compared to the rather stable oceanic conditions at the other two sites. Maximum growth and POC production rates of the Azores and Bergen populations were similar and significantly higher than that of the Canary Islands population. This pattern could be driven by temperature–CO2 interactions where the chosen incubation temperature (16°C) was slightly below what strains isolated near the Canary Islands normally experience. Our results indicate adaptation of E. huxleyi to their local environmental conditions and the existence of distinct E. huxleyi populations. Within each population, different growth, POC, and PIC production rates at different pCO2 levels indicated strain-specific phenotypic plasticity. Accounting for this variability is important to understand how or whether E. huxleyi might adapt to rising CO2 levels.
    Schlagwort(e): BIOACID; Biological Impacts of Ocean Acidification
    Materialart: Dataset
    Format: application/zip, 3 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Riebesell, Ulf; Bach, Lennart Thomas; Bellerby, Richard G J; Bermúdez Monsalve, Rafael; Boxhammer, Tim; Czerny, Jan; Larsen, Aud; Ludwig, Andrea; Schulz, Kai Georg (2017): Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification. Nature Geoscience, 10(1), 19-23, https://doi.org/10.1038/ngeo2854
    Publikationsdatum: 2024-04-27
    Beschreibung: Coccolithophores -single-celled calcifying phytoplankton- are an important group of marine primary producers and the dominant builders of calcium carbonate globally. Coccolithophores form extensive blooms and increase the density and sinking speed of organic matter via calcium carbonate ballasting. Thereby, they play a key role in the marine carbon cycle. Coccolithophore physiological responses to experimental ocean acidification have ranged from moderate stimulation to substantial decline in growth and calcification rates, combined with enhanced malformation of their calcite platelets. Here we report on a mesocosm experiment conducted in a Norwegian fjord in which we exposed a natural plankton community to a wide range of CO2-induced ocean acidification, to test whether these physiological responses affect the ecological success of coccolithophore populations. Under high-CO2 treatments, Emiliania huxleyi, the most abundant and productive coccolithophore species, declined in population size during the pre-bloom period and lost the ability to form blooms. As a result, particle sinking velocities declined by up to 30% and sedimented organic matter was reduced by up to 25% relative to controls. There were also strong reductions in seawater concentrations of the climate-active compound dimethylsulfide in CO2-enriched mesocosms. We conclude that ocean acidification can lower calcifying phytoplankton productivity, potentially creating a positive feedback to the climate system.
    Schlagwort(e): BIOACID; Biological Impacts of Ocean Acidification
    Materialart: Dataset
    Format: application/zip, 2 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...