GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 581.7  (1)
  • Abundance change; Alkalinity, total; Aragonite saturation state; Asterias rubens; Asterias rubens, survival; Balanus improvisus; Balanus improvisus, plate, growth rate; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; Entire community; Experiment; Fucus vesiculosus; Fucus vesiculosus, length, growth rate; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Mesocosm or benthocosm; Mortality/Survival; Mytilus edulis; Mytilus edulis, shell length, growth rate; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Replicate; Rocky-shore community; Salinity; Season; Temperate; Temperature; Temperature, water; Treatment; Type of study  (1)
Document type
Keywords
Publisher
Language
Years
  • 1
    Publication Date: 2024-03-15
    Description: The plea for using more “realistic,” community‐level, investigations to assess the ecological impacts of global change has recently intensified. Such experiments are typically more complex, longer, more expensive, and harder to interpret than simple organism‐level benchtop experiments. Are they worth the extra effort? Using outdoor mesocosms, we investigated the effects of ocean warming (OW) and acidification (OA), their combination (OAW), and their natural fluctuations on coastal communities of the western Baltic Sea during all four seasons. These communities are dominated by the perennial and canopy‐forming macrophyte Fucus vesiculosus—an important ecosystem engineer Baltic‐wide. We, additionally, assessed the direct response of organisms to temperature and pH in benchtop experiments, and examined how well organism‐level responses can predict community‐level responses to the dominant driver, OW. OW affected the mesocosm communities substantially stronger than acidification. OW provoked structural and functional shifts in the community that differed in strength and direction among seasons. The organism‐level response to OW matched well the community‐level response of a given species only under warm and cold thermal stress, that is, in summer and winter. In other seasons, shifts in biotic interactions masked the direct OW effects. The combination of direct OW effects and OW‐driven shifts of biotic interactions is likely to jeopardize the future of the habitat‐forming macroalga F. vesiculosus in the Baltic Sea. Furthermore, we conclude that seasonal mesocosm experiments are essential for our understanding of global change impact because they take into account the important fluctuations of abiotic and biotic pressures.
    Keywords: Abundance change; Alkalinity, total; Aragonite saturation state; Asterias rubens; Asterias rubens, survival; Balanus improvisus; Balanus improvisus, plate, growth rate; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; Entire community; Experiment; Fucus vesiculosus; Fucus vesiculosus, length, growth rate; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Mesocosm or benthocosm; Mortality/Survival; Mytilus edulis; Mytilus edulis, shell length, growth rate; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Replicate; Rocky-shore community; Salinity; Season; Temperate; Temperature; Temperature, water; Treatment; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 1200 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-26
    Description: The Atacama Desert is the driest non-polar desert on Earth, presenting precarious conditions for biological activity. In the arid coastal belt, life is restricted to areas with fog events that cause almost daily wet–dry cycles. In such an area, we discovered a hitherto unknown and unique ground covering biocenosis dominated by lichens, fungi, and algae attached to grit-sized (~6 mm) quartz and granitoid stones. Comparable biocenosis forming a kind of a layer on top of soil and rock surfaces in general is summarized as cryptogamic ground covers (CGC) in literature. In contrast to known CGC from arid environments to which frequent cyclic wetting events are lethal, in the Atacama Desert every fog event is answered by photosynthetic activity of the soil community and thus considered as the desert's breath. Photosynthesis of the new CGC type is activated by the lowest amount of water known for such a community worldwide thus enabling the unique biocenosis to fulfill a variety of ecosystem services. In a considerable portion of the coastal Atacama Desert, it protects the soil from sporadically occurring splash erosion and contributes to the accumulation of soil carbon and nitrogen as well as soil formation through bio-weathering. The structure and function of the new CGC type are discussed, and we suggest the name grit–crust. We conclude that this type of CGC can be expected in all non-polar fog deserts of the world and may resemble the cryptogam communities that shaped ancient Earth. It may thus represent a relevant player in current and ancient biogeochemical cycling.
    Keywords: 581.7
    Language: English
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...