GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AWI_Paleo; Paleoenvironmental Reconstructions from Marine Sediments @ AWI  (3)
  • 002; 011; 013; 016; 2-19-1; 2-20-1; 2-22-1; 3-10-1; 3-1-1; 3-11-1; 3-1-2; 3-7-1; ANT-I/2; ANT-II/4; ANT-III/3; ANT-IV/3; ANT-V/4; ANT-VI/3; AWI_Paleo; Cape Fiske; Dredge; DRG; Filchner Shelf; Filchner Trough; G1; G15; G17; G18; G2; G5; GC; Giant box corer; GKG; Glacier; Gould Bay; Gravity corer; Gravity corer (Kiel type); International Weddell Sea Oceanographic Expeditions; IWSOE68; IWSOE68-002; IWSOE68-011; IWSOE68-013; IWSOE68-016; IWSOE69; IWSOE69-G1; IWSOE69-G15; IWSOE69-G17; IWSOE69-G18; IWSOE69-G2; IWSOE69-G5; IWSOE70; IWSOE70-2-19-1; IWSOE70-2-20-1; IWSOE70-2-22-1; IWSOE70-3-10-1; IWSOE70-3-1-1; IWSOE70-3-11-1; IWSOE70-3-1-2; IWSOE70-3-7-1; MG; Multiboxcorer; NARE77; NARE77_11; NARE77_12; NARE77_13; NARE77_14; NARE77_16; NARE77_19; NARE77_20; NARE77_22; NARE77_23; NARE79; NARE79_210; NARE79_212; NARE79_213; NARE79_214; NARE79_221; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; PC; Piston corer; Polarsirkel; Polarstern; PS01; PS01/154; PS01/155; PS01/156; PS01/161; PS01/162; PS01/177; PS01/184; PS01/186; PS01/189; PS04; PS04/318; PS04/334; PS04/335; PS04/337; PS04/340; PS04/346; PS04/348; PS04/350; PS04/351; PS04/357; PS04/368; PS04/370; PS04/380; PS04/382; PS04/389; PS04/414; PS04/423; PS04/429; PS04/433; PS04/434; PS04/442; PS04/447; PS04/449; PS04/472; PS04/477; PS04/481; PS04/484; PS04/495; PS04/500; PS04/508; PS04/509; PS06/301; PS06/302; PS06/303; PS06/304; PS06/306; PS06 SIBEX; PS08; PS08/379; PS08/380; PS08/381; PS08/382; PS08/384; PS08/385; PS08/386; PS08/387; PS08/439; PS08/442; PS08/444; PS08/449; PS08/450; PS08/452; PS10; PS10/778; PS1010-1; PS1011-1; PS1012-1; PS1013-1; PS1014-1; PS1016-1; PS1017-1; PS1018-1; PS1019-1; PS1194-1; PS1196-1; PS1197-1; PS1197-2; PS1198-1; PS1199-1; PS1199-2; PS12; PS12/344; PS12/348; PS12/350; PS12/372; PS1200-2; PS1200-4; PS1201-1; PS1202-2; PS1203-1; PS1204-1; PS1205-1; PS1206-1; PS1207-2; PS1208-1; PS1209-1; PS1210-1; PS1210-2; PS1211-2; PS1212-1; PS1213-1; PS1214-1; PS1215-2; PS1216-1; PS1217-1; PS1219-1; PS1220-3; PS1222-1; PS1223-1; PS1275-1; PS1276-1; PS1277-1; PS1278-1; PS1279-1; PS1396-1; PS1397-1; PS1397-3; PS1398-1; PS1398-2; PS1399-1; PS1400-1; PS1400-4; PS1401-1; PS1401-2; PS1402-2; PS1403-1; PS1418-1; PS1420-1; PS1420-2; PS1422-1; PS1423-1; PS1423-2; PS1424-1; PS1424-2; PS1498-1; PS1498-2; PS1609-2; PS1609-3; PS1611-1; PS1611-3; PS1612-1; PS1612-2; PS1621-2; SL; Weddell Sea  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gutjahr, Marcus; Vance, Derek; Hoffmann, Dirk L; Hillenbrand, Claus-Dieter; Foster, Gavin L; Rae, James W B; Kuhn, Gerhard (2013): Structural limitations in deriving accurate U-series ages from calcitic cold-water corals contrast with robust coral radiocarbon and Mg/Ca systematics. Chemical Geology, 355, 69-87, https://doi.org/10.1016/j.chemgeo.2013.07.002
    Publication Date: 2023-05-12
    Description: Radiocarbon and uranium-thorium dating results are presented from a genus of calcitic Antarctic cold-water octocorals (family Coralliidae), which were collected from the Marie Byrd Seamounts in the Amundsen Sea (Pacific sector of the Southern Ocean) and which to date have not been investigated geochemically. The geochronological results are set in context with solution and laser ablation-based element/Ca ratios (Li, B, Mg, Mn, Sr, Ba, U, Th). Octocoral radiocarbon ages on living corals are in excellent agreement with modern ambient deep-water D14C, while multiple samples of individual fossil coral specimens yielded reproducible radiocarbon ages. Provided that local radiocarbon reservoir ages can be derived for a given time, fossil Amundsen Sea octocorals should be reliably dateable by means of radiocarbon. In contrast to the encouraging radiocarbon findings, the uranium-series data are more difficult to interpret. The uranium concentration of these calcitic octocorals is an order of magnitude lower than in the aragonitic hexacorals that are conventionally used for geochronological investigations. While modern and Late Holocene octocorals yield initial d234U in good agreement with modern seawater, our results reveal preferential inward diffusion of dissolved alpha-recoiled 234U and its impact on fossil coral d234U. Besides alpha-recoil related 234U diffusion, high-resolution sampling of two fossil octocorals further demonstrates that diagenetic uranium mobility has offset apparent coral U-series ages. Combined with the preferential alpha-recoil 234U diffusion, this process has prevented fossil octocorals from preserving a closed system U-series calendar age for longer than a few thousand years. Moreover, several corals investigated contain significant initial thorium, which cannot be adequately corrected for because of an apparently variable initial 232Th/230Th. Our results demonstrate that calcitic cold-water corals are unsuitable for reliable U-series dating. Mg/Ca ratios within single octocoral specimens are internally strikingly homogeneous, and appear promising in terms of their response to ambient temperature. Magnesium/lithium ratios are significantly higher than usually observed in other deep marine calcifiers and for many of our studied corals are remarkably close to seawater compositions. Although this family of octocorals is unsuitable for glacial deep-water D14C reconstructions, our findings highlight some important differences between hexacoral (aragonitic) and octocoral (calcitic) biomineralisation. Calcitic octocorals could still be useful for trace element and some isotopic studies, such as reconstruction of ambient deep water neodymium isotope composition or pH, via boron isotopic measurements.
    Keywords: AWI_Paleo; Paleoenvironmental Reconstructions from Marine Sediments @ AWI
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Klages, Johann Philipp; Kuhn, Gerhard; Hillenbrand, Claus-Dieter; Smith, James A; Graham, Alastair G C; Nitsche, Frank-Oliver; Frederichs, Thomas; Jernas, Patrycja E; Gohl, Karsten; Wacker, Lukas (2017): Limited grounding-line advance onto the West Antarctic continental shelf in the easternmost Amundsen Sea Embayment during the last glacial period. PLoS ONE, 12(7), e0181593, https://doi.org/10.1371/journal.pone.0181593
    Publication Date: 2023-05-12
    Description: Precise knowledge about the extent of the West Antarctic Ice Sheet (WAIS) at the Last Glacial Maximum (LGM; c. 26.5-19 cal. ka BP) is important in order to 1) improve paleo-ice sheet reconstructions, 2) provide a robust empirical framework for calibrating paleo-ice sheet models, and 3) locate potential shelf refugia for Antarctic benthos during the last glacial period. However, reliable reconstructions are still lacking for many WAIS sectors, particularly for key areas on the outer continental shelf, where the LGM-ice sheet is assumed to have terminated. In many areas of the outer continental shelf around Antarctica, direct geological data for the presence or absence of grounded ice during the LGM is lacking because of post-LGM iceberg scouring. This also applies to most of the outer continental shelf in the Amundsen Sea. Here we present detailed marine geophysical and new geological data documenting a sequence of glaciomarine sediments up to ~12 m thick within the deep outer portion of Abbot Trough, a palaeo-ice stream trough on the outer shelf of the Amundsen Sea Embayment. The upper 2-3 meters of this sediment drape contain calcareous foraminifera of Holocene and (pre-)LGM age and, in combination with palaeomagnetic age constraints, indicate that continuous glaciomarine deposition persisted here since well before the LGM, possibly even since the last interglacial period. Our data therefore indicate that the LGM grounding line, whose exact location was previously uncertain, did not reach the shelf edge everywhere in the Amundsen Sea. The LGM grounding line position coincides with the crest of a distinct grounding-zone wedge ~100 km inland from the continental shelf edge. Thus, an area of 〉6000 km² remained free of grounded ice through the last glacial cycle, requiring the LGM grounding line position to be re-located in this sector, and suggesting a new site at which Antarctic shelf benthos may have survived the last glacial period.
    Keywords: AWI_Paleo; Paleoenvironmental Reconstructions from Marine Sediments @ AWI
    Type: Dataset
    Format: application/zip, 17 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kuhn, Gerhard; Hillenbrand, Claus-Dieter; Kasten, Sabine; Smith, James A; Nitsche, Frank-Oliver; Frederichs, Thomas; Wiers, Steffen; Ehrmann, Werner; Klages, Johann Philipp; Mogollón, José M (2017): Evidence for a palaeo-subglacial lake on the Antarctic continental shelf. Nature Communications, 8, 15591, https://doi.org/10.1038/NCOMMS15591
    Publication Date: 2023-05-12
    Description: Subglacial lakes are widespread beneath the Antarctic ice sheet but their control on ice sheet dynamics and their ability to harbour life remain poorly characterised. Here we present the evidence for a palaeo-subglacial lake on the Antarctic continental shelf. A distinct sediment facies recovered from a bedrock basin in Pine Island Bay indicates deposition within a low-energy lake environment. Diffusive-advection modelling demonstrates that low chloride concentrations in the sediment pore water can only be explained by initial deposition of this facies in a freshwater setting. These observations indicate that an active subglacial meltwater network, similar to that observed beneath the extant ice sheet, was also active during the last glacial period. It also provides a new framework for refining exploration of these unique environments.
    Keywords: AWI_Paleo; Paleoenvironmental Reconstructions from Marine Sediments @ AWI
    Type: Dataset
    Format: application/zip, 29 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hillenbrand, Claus-Dieter; Melles, Martin; Kuhn, Gerhard; Larter, Robert D (2012): Marine geological constraints for the grounding-line position of the Antarctic Ice Sheet on the southern Weddell Sea shelf at the Last Glacial Maximum. Quaternary Science Reviews, 32, 25-47, https://doi.org/10.1016/j.quascirev.2011.11.017
    Publication Date: 2023-06-27
    Description: Abstract: The history of grounded ice-sheet extent on the southern Weddell Sea shelf during the Last Glacial Maximum (LGM) and the timing of post-LGM ice-sheet retreat are poorly constrained. Several glaciological models reconstructed widespread grounding and major thickening of the Antarctic Ice Sheet in the Weddell Sea sector at the LGM. In contrast, recently published onshore data and modelling results concluded only very limited LGM-thickening of glaciers and ice streams feeding into the modern Filchner and Ronne ice shelves. These studies concluded that during the LGM ice shelves rather than grounded ice covered the Filchner and Ronne troughs, two deep palaeo-ice stream troughs eroded into the southern Weddell Sea shelf. Here we review previously published and unpublished marine geophysical and geological data from the southern Weddell Sea shelf. The stratigraphy and geometry of reflectors in acoustic sub-bottom profiles are similar to those from other West Antarctic palaeo-ice stream troughs, where grounded ice had advanced to the shelf break at the LGM. Numerous cores from the southern Weddell Sea shelf recovered sequences with properties typical for subglacially deposited tills or subglacially compacted sediments. These data sets give evidence that grounded ice had advanced across the shelf during the past, thereby grounding in even the deepest parts of the Filchner and Ronne troughs. Radiocarbon dates from glaciomarine sediments overlying the subglacial deposits are limited, but indicate that the ice grounding occurred at the LGM and that ice retreat started before ~15.1 corrected 14C kyrs before present (BP) on the outer shelf and before ~7.7 corrected 14C kyrs BP on the inner shelf, which is broadly synchronous with ice retreat in other Antarctic sectors. The apparent mismatch between the ice-sheet reconstructions from marine and terrestrial data can be attributed to ice streams with very low surface profiles (similar to those of "ice plains") that had advanced through Filchner Trough and Ronne Trough at the LGM. Considering the global sea-level lowstand of ~130 metres below present, a low surface slope of the expanded LGM-ice sheet in the southern Weddell Sea can reconcile grounding-line advance to the shelf break with limited thickening of glaciers and ice streams in the hinterland. This scenario implies that ice-sheet growth in the Weddell Sea sector during the LGM and ice-sheet drawdown throughout the last deglaciation could only have made minor contributions to the major global sea-level fluctuations during these times.
    Keywords: 002; 011; 013; 016; 2-19-1; 2-20-1; 2-22-1; 3-10-1; 3-1-1; 3-11-1; 3-1-2; 3-7-1; ANT-I/2; ANT-II/4; ANT-III/3; ANT-IV/3; ANT-V/4; ANT-VI/3; AWI_Paleo; Cape Fiske; Dredge; DRG; Filchner Shelf; Filchner Trough; G1; G15; G17; G18; G2; G5; GC; Giant box corer; GKG; Glacier; Gould Bay; Gravity corer; Gravity corer (Kiel type); International Weddell Sea Oceanographic Expeditions; IWSOE68; IWSOE68-002; IWSOE68-011; IWSOE68-013; IWSOE68-016; IWSOE69; IWSOE69-G1; IWSOE69-G15; IWSOE69-G17; IWSOE69-G18; IWSOE69-G2; IWSOE69-G5; IWSOE70; IWSOE70-2-19-1; IWSOE70-2-20-1; IWSOE70-2-22-1; IWSOE70-3-10-1; IWSOE70-3-1-1; IWSOE70-3-11-1; IWSOE70-3-1-2; IWSOE70-3-7-1; MG; Multiboxcorer; NARE77; NARE77_11; NARE77_12; NARE77_13; NARE77_14; NARE77_16; NARE77_19; NARE77_20; NARE77_22; NARE77_23; NARE79; NARE79_210; NARE79_212; NARE79_213; NARE79_214; NARE79_221; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; PC; Piston corer; Polarsirkel; Polarstern; PS01; PS01/154; PS01/155; PS01/156; PS01/161; PS01/162; PS01/177; PS01/184; PS01/186; PS01/189; PS04; PS04/318; PS04/334; PS04/335; PS04/337; PS04/340; PS04/346; PS04/348; PS04/350; PS04/351; PS04/357; PS04/368; PS04/370; PS04/380; PS04/382; PS04/389; PS04/414; PS04/423; PS04/429; PS04/433; PS04/434; PS04/442; PS04/447; PS04/449; PS04/472; PS04/477; PS04/481; PS04/484; PS04/495; PS04/500; PS04/508; PS04/509; PS06/301; PS06/302; PS06/303; PS06/304; PS06/306; PS06 SIBEX; PS08; PS08/379; PS08/380; PS08/381; PS08/382; PS08/384; PS08/385; PS08/386; PS08/387; PS08/439; PS08/442; PS08/444; PS08/449; PS08/450; PS08/452; PS10; PS10/778; PS1010-1; PS1011-1; PS1012-1; PS1013-1; PS1014-1; PS1016-1; PS1017-1; PS1018-1; PS1019-1; PS1194-1; PS1196-1; PS1197-1; PS1197-2; PS1198-1; PS1199-1; PS1199-2; PS12; PS12/344; PS12/348; PS12/350; PS12/372; PS1200-2; PS1200-4; PS1201-1; PS1202-2; PS1203-1; PS1204-1; PS1205-1; PS1206-1; PS1207-2; PS1208-1; PS1209-1; PS1210-1; PS1210-2; PS1211-2; PS1212-1; PS1213-1; PS1214-1; PS1215-2; PS1216-1; PS1217-1; PS1219-1; PS1220-3; PS1222-1; PS1223-1; PS1275-1; PS1276-1; PS1277-1; PS1278-1; PS1279-1; PS1396-1; PS1397-1; PS1397-3; PS1398-1; PS1398-2; PS1399-1; PS1400-1; PS1400-4; PS1401-1; PS1401-2; PS1402-2; PS1403-1; PS1418-1; PS1420-1; PS1420-2; PS1422-1; PS1423-1; PS1423-2; PS1424-1; PS1424-2; PS1498-1; PS1498-2; PS1609-2; PS1609-3; PS1611-1; PS1611-3; PS1612-1; PS1612-2; PS1621-2; SL; Weddell Sea
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...