GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2003
    In:  Journal of Climate Vol. 16, No. 14 ( 2003-07-15), p. 2340-2354
    In: Journal of Climate, American Meteorological Society, Vol. 16, No. 14 ( 2003-07-15), p. 2340-2354
    Abstract: The surface wind stress response to sea surface temperature (SST) over the latitude range 30°–60°S in the Southern Ocean is described from the National Aeronautics and Space Administration's QuikSCAT scatterometer observations of wind stress and Reynolds analyses of SST during the 2-yr period August 1999 to July 2001. While ocean–atmosphere coupling at midlatitudes has previously been documented from several case studies, this is the first study to quantify this relation over the entire Southern Ocean. The spatial structures of the surface wind perturbations with wavelengths shorter than 10° latitude by 30° longitude are closely related to persistent spatial variations of the SST field on the same scales. The wind stress curl and divergence are shown to be linearly related, respectively, to the crosswind and downwind components of the SST gradient. The curl response has a magnitude only about half that of the divergence response. This observed coupling is consistent with the hypothesis that SST modification of marine atmospheric boundary layer (MABL) stability affects vertical turbulent mixing of momentum, inducing perturbations in the surface winds. The nonequivalence between the responses of the curl and divergence to the crosswind and downwind SST gradients suggests that secondary circulations in the MABL may also play an important role by producing significant perturbations in the surface wind field near SST fronts that are distinct from the vertical turbulent transfer of momentum. The importance of the wind stress curl in driving Ekman vertical velocity in the open ocean implies that the coupling between winds and SST may have important feedback effects on upper ocean processes near SST fronts.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2003
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2003
    In:  Journal of Climate Vol. 16, No. 21 ( 2003-11), p. 3482-3497
    In: Journal of Climate, American Meteorological Society, Vol. 16, No. 21 ( 2003-11), p. 3482-3497
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2003
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2009
    In:  Journal of Climate Vol. 22, No. 9 ( 2009-05-01), p. 2458-2482
    In: Journal of Climate, American Meteorological Society, Vol. 22, No. 9 ( 2009-05-01), p. 2458-2482
    Abstract: The nature of the teleconnection linking ENSO variability with Atlantic basin tropical storm formation is investigated. Solutions of the linearized barotropic vorticity equation forced with August–October El Niño event divergence produce upper-tropospheric vorticity anomalies over the Sahel and at the mouth of the North African–Asian (NAA) jet over the tropical Atlantic. These responses are similar in magnitude and orientation to observed ENSO vorticity variability for this region. Further investigation reveals that the vorticity anomalies over the subtropical Atlantic develop primarily in response to very low wavenumber, westward-propagating stationary Rossby waves excited by El Niño–related convective activity over the equatorial Pacific Ocean. However, the dynamics of this teleconnection change as the Atlantic basin hurricane season progresses. In August and September the response is dominated by the westward-propagating stationary Rossby waves that alter vorticity within the NAA jet and to its south. The upper-tropospheric nondivergent zonal wind anomalies produced by these vorticity anomalies are similar in pattern to observed zonal wind and vertical zonal wind shear anomalies, which suppress Atlantic basin tropical cyclogenesis. By October, eastward-propagating signals also develop over the tropical Atlantic Ocean in response to El Niño conditions. Over the main development region of Atlantic basin tropical cyclogenesis, these eastward-propagating Rossby waves appear to destructively interfere with the vorticity changes produced by the westward-propagating Rossby waves within the NAA jet. In addition, the NAA jet has shifted south by October. Consequently, the resultant upper-tropospheric nondivergent zonal wind perturbations for October are weak and suggest that ENSO should have little effect on rates of Atlantic basin tropical cyclogenesis during October. Statistical analyses of monthly ENSO-related changes in Atlantic basin tropical storm formation support this hypothesis.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2012
    In:  Journal of Climate Vol. 25, No. 17 ( 2012-09-01), p. 5916-5942
    In: Journal of Climate, American Meteorological Society, Vol. 25, No. 17 ( 2012-09-01), p. 5916-5942
    Abstract: The responses of surface wind and wind stress to spatial variations of sea surface temperature (SST) are investigated using satellite observations of the surface wind from the Quick Scatterometer (QuikSCAT) and SST from the Advanced Microwave Scanning Radiometer on the Advanced Microwave Scanning Radiometer for Earth Observing System (EOS) (AMSR-E) Aqua satellite. This analysis considers the 7-yr period June 2002–May 2009 during which both instruments were operating. Attention is focused in the Kuroshio, North and South Atlantic, and Agulhas Return Current regions. Since scatterometer wind stresses are computed solely as a nonlinear function of the scatterometer-derived 10-m equivalent neutral wind speed (ENW), qualitatively similar responses of the stress and ENW to SST are expected. However, the responses are found to be more complicated on the oceanic mesoscale. First, the stress and ENW are both approximately linearly related to SST, despite a nonlinear relationship between them. Second, the stress response to SST is 2 to 5 times stronger during winter compared to summer, while the ENW response to SST exhibits relatively little seasonal variability. Finally, the stress response to SST can be strong in regions where the ENW response is weak and vice versa. A straightforward algebraic manipulation shows that the stress perturbations are directly proportional to the ENW perturbations multiplied by a nonlinear function of the ambient large-scale ENW. This proportionality explains why both the stress and ENW depend linearly on the mesoscale SST perturbations, while the dependence of the stress perturbations on the ambient large-scale ENW explains both the seasonal pulsing and the geographic variability of the stress response to SST compared with the less variable ENW response.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2012
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2002
    In:  Journal of Climate Vol. 15, No. 23 ( 2002-12), p. 3361-3378
    In: Journal of Climate, American Meteorological Society, Vol. 15, No. 23 ( 2002-12), p. 3361-3378
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2002
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 1996
    In:  Journal of Climate Vol. 9, No. 10 ( 1996-10), p. 2307-2325
    In: Journal of Climate, American Meteorological Society, Vol. 9, No. 10 ( 1996-10), p. 2307-2325
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1996
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Climate, American Meteorological Society, Vol. 14, No. 7 ( 2001-04), p. 1479-1498
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2001
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2005
    In:  Journal of Climate Vol. 18, No. 14 ( 2005-07-15), p. 2706-2723
    In: Journal of Climate, American Meteorological Society, Vol. 18, No. 14 ( 2005-07-15), p. 2706-2723
    Abstract: The marine atmospheric boundary layer (MABL) response to sea surface temperature (SST) perturbations with wavelengths shorter than 30° longitude by 10° latitude along the Agulhas Return Current (ARC) is described from the first year of SST and cloud liquid water (CLW) measurements from the Advanced Microwave Scanning Radiometer (AMSR) on the Earth Observing System (EOS) Aqua satellite and surface wind stress measurements from the QuikSCAT scatterometer. AMSR measurements of SST at a resolution of 58 km considerably improves upon a previous analysis that used the Reynolds SST analyses, which underestimate the short-scale SST gradient magnitude over the ARC region by more than a factor of 5. The AMSR SST data thus provide the first quantitatively accurate depiction of the SST-induced MABL response along the ARC. Warm (cold) SST perturbations produce positive (negative) wind stress magnitude perturbations, leading to short-scale perturbations in the wind stress curl and divergence fields that are linearly related to the crosswind and downwind components of the SST gradient, respectively. The magnitudes of the curl and divergence responses vary seasonally and spatially with a response nearly twice as strong during the winter than during the summer along a zonal band between 40° and 50°S. These seasonal variations closely correspond to seasonal and spatial variability of large-scale MABL stability and surface sensible heat flux estimated from NCEP reanalysis fields. SST-induced deepening of the MABL over warm water is evident in AMSR measurements of CLW. Typical annual mean differences in cloud thickness between cold and warm SST perturbations are estimated to be about 300 m.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2005
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2010
    In:  Journal of Climate Vol. 23, No. 3 ( 2010-02-01), p. 559-581
    In: Journal of Climate, American Meteorological Society, Vol. 23, No. 3 ( 2010-02-01), p. 559-581
    Abstract: The dynamical response of the marine atmospheric boundary layer (MABL) to mesoscale sea surface temperature (SST) perturbations is investigated over the Agulhas Return Current during winter from a 1-month, high-resolution, three-dimensional simulation using the Weather Research and Forecasting (WRF) mesoscale model. A steady lower boundary condition for July 2002 is obtained using SST measurements from the Advanced Microwave Scanning Radiometer on the Earth Observing System (EOS)–Aqua satellite (AMSR-E). The WRF models’ ability to accurately simulate the SST-induced surface wind response is demonstrated from a comparison with satellite surface wind observations from the SeaWinds scatterometer on the Quick Scatterometer (QuikSCAT) satellite. Relevant features of this simulation include a quasi-periodic distribution of mesoscale SST perturbations with spatial scales ∼200 km and strong winds that lead to a large surface sensible heat flux response, whose broad range of 80–100 W m−2 between warm and cool SST perturbations is much larger than seen in most previous simulations of mesoscale wind–SST coupling. This simulation provides the first realistic example of vertical turbulent redistribution of momentum driven by the SST-induced surface heating perturbations acting in concert with the SST-induced pressure gradients to accelerate near-surface flow toward warm water and decelerate near-surface flow toward cool water. This simulation is also the first example of a near-surface wind speed response to mesoscale SST perturbations that differs qualitatively and substantially from the vertically averaged MABL wind response. In the vertically averaged MABL momentum budget, the surface wind stress acts as a drag on the SST-induced perturbation flow as it is being accelerated by SST-induced pressure gradients. However, only in the middle and upper reaches of the MABL does the turbulent stress divergence act as a drag on the SST-induced winds perturbations in this simulation. These mesoscale SST perturbations are also shown to modify the wind direction within the MABL. Dynamically, this is accomplished through SST-induced perturbations to the crosswind components of the pressure gradient, turbulent stress divergence, and the Coriolis force.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2010
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2009
    In:  Journal of Climate Vol. 22, No. 1 ( 2009-01-01), p. 146-164
    In: Journal of Climate, American Meteorological Society, Vol. 22, No. 1 ( 2009-01-01), p. 146-164
    Abstract: This study evaluates the impacts of sea surface temperature (SST) specification and grid resolution on numerical simulations of air–sea coupling near oceanic fronts through analyses of surface winds from the European Centre for Medium-Range Weather Forecasts (ECMWF) model. The 9 May 2001 change of the boundary condition from the Reynolds SST analyses to the NOAA Real-Time Global (RTG) SST in the ECMWF model resulted in an abrupt increase in mesoscale variance of the model surface winds over the ocean. In contrast, the 21 November 2000 change of the grid resolution resulted in an abrupt increase in mesoscale variability of surface winds over mountainous regions on land but had no significant effect on winds over the ocean. To further investigate model sensitivity to the SST boundary condition and grid resolution, a series of simulations were made with the Weather Research and Forecasting (WRF) model over a domain encompassing the Agulhas return current (ARC: also called “retroflection”) region in the south Indian Ocean. Results from three WRF simulations with SST measured by the Advanced Microwave Scanning Radiometer on the Earth Observing System Aqua satellite (AMSR-E) and the Reynolds and RTG SST analyses indicate the vital importance of the resolution of the SST boundary condition for accurate simulation of the air–sea coupling between SST and surface wind speed. WRF simulations with grid spacings of 40 and 25 km show that the latter increased energy only on scales shorter than 250 km. In contrast, improved resolution of SST significantly increased the mesoscale variability for scales up to 1000 km. Further sensitivity studies with the WRF model conclude that the weak coupling of surface wind speeds from the ECMWF model to SST is likely attributable primarily to the weak response of vertical turbulent mixing to SST-induced stability in the parameterization of boundary layer turbulence, with an overestimation of vertical diffusion by about 60% on average in stable conditions and an underestimation by about 40% in unstable conditions.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...