GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Springer  (1)
  • University of California Press  (1)
  • 1
    ISSN: 1573-1421
    Schlagwort(e): Framvaren fjord ; anoxic waters ; sulfide ; tritium ; silica ; mineralization and ventilation rates ; carbon isotopes
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie , Geologie und Paläontologie
    Notizen: Abstract Three different layers have been identified in Framvaren, which has a maximum water depth of 184 m. One oxic layer above the redoxcline at 18–20 m. One anoxic layer from 20 to 100 m which is occasionally ventilated by a flow over the sill (which has a depth of 2.5 m), and finally a stagnant layer below 100 m. Using the release rate of silica from the bottom and measurements of the concentration of HTO it is possible to make some calculations on the annual volume of interleaving in the layers 25–50 m, 50–75 m, and 75–100 m together with the advective flows. Reliable values of the sulfide concentration were obtained by precipitating and weighing HgS together with careful protection of all anoxic water samples with argon. The light yellow color of the precipitate in the depth range 25 to 80 m indicates that the occasional ventilation will cause such reactions as 0.502 + H2S S(colloidal) + H2O. The elemental sulfur, being stabilized with HS−, is set free upon the precipitation of HgS. The new data for the concentration of sulfide give an acceptable stoichiometry for the decay reaction of organic matter. This is not the case with the data of Yao and Millero. The mean values for the concentrations of ammonium and phosphate agree with the new data of Yao and Millero. The mol/mol C/N ratio of 10.1 found in trapped material by Naess and coworkers (1988) agrees with the stoichiometry of the dissolved constituents, i.e. C/N = 9.92 ± 0.45. A denitrification reaction is suggested to explain the high values of C/N. The vertical diffusion coefficient at 100 m calculated from the depth profile of silica was 0.92 × 10−6 m2 s−1 which lies in the range of values given by Fröyland. Finally, the 14C age of the total dissolved inorganic carbon (Ct) in the water below 90 m was about 1600 years indicating a bioproduction in the period 8000 years B.P. to A.D. 1853 when a channel was opened between the fjord outside (Helvikfjord) and Framvaren.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2024-05-08
    Beschreibung: The rapid melt of snow and sea ice during the Arctic summer provides a significant source of low-salinity meltwater to the surface ocean on the local scale. The accumulation of this meltwater on, under, and around sea ice floes can result in relatively thin meltwater layers in the upper ocean. Due to the small-scale nature of these upper-ocean features, typically on the order of 1 m thick or less, they are rarely detected by standard methods, but are nevertheless pervasive and critically important in Arctic summer. Observations during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in summer 2020 focused on the evolution of such layers and made significant advancements in understanding their role in the coupled Arctic system. Here we provide a review of thin meltwater layers in the Arctic, with emphasis on the new findings from MOSAiC. Both prior and recent observational datasets indicate an intermittent yet longlasting (weeks to months) meltwater layer in the upper ocean on the order of 0.1 m to 1.0 m in thickness, with a large spatial range. The presence of meltwater layers impacts the physical system by reducing bottom ice melt and allowing new ice formation via false bottom growth. Collectively, the meltwater layer and false bottoms reduce atmosphere-ocean exchanges of momentum, energy, and material.The impacts on the coupled Arctic system are far-reaching, including acting as a barrier for nutrient and gas exchange and impacting ecosystem diversity and productivity.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...