GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Carbon dioxide, partial pressure; CO2S; CO2 Sensor; DATE/TIME; DEPTH, water; HydroC pCO2 sensor, CONTROS; Kiel Fjord; Kiel-Fjord_GEOMAR  (2)
  • 1H NMR spectroscopy; Acetate, per wet mass; Adenosine diphosphate, per wet mass; Adenosine monophosphate, per wet mass; Adenosine triphosphate, per wet mass; Alanine; Anserine; Arginine; Asparagine; Aspartic acid; Asterias_rubens_2018; Baltic Sea, Eckernförde Bay; Baltic Sea, Kattegat; BD; beta-Alanine; Betaine; Bromide; Calcium; Calculated average/mean values; Carnitine; cellular volume regulation; Chloride; Choline; Climate change; Creatine; Creatinephosphate; Creatinine; Date/time end, experiment; Date/time start, experiment; Diadumene_lineata_2018; Dimethylamine; Dimethylsulfone; Dredge, benthos; Event label; Flame photometry; Fluoride; Freeze-depression osmometer, Gonotec, Osmomat 030; Glutamic acid; Glutamine; Glycine; HAND; Histamine; Homarine 5; Homocysteine; Homoserine; Hydroxyacetone; Hypotaurine; Individual code; Inosine; invertebrates; Ion chromatography; Isoleucine; Kieler Bucht; Laboratory experiment; Lactate, per wet mass; L-Arginine; Leucine; Littorina_littorea_2018; Lysine; Malonate; Medium; Metabolite, unassigned; Methylamine; Methylmalonate; Mytilus_edulis_2018; Nitrate; N-Methylhydantoin; O-Acetylcholine; O-Phosphocholine; Ornithine; osmoconformer; Osmolality; osmolytes; osmoregulation; Phenylalanine; Phosphate; pi-Methylhistidine; Potassium; Proline; Psammechinus_miliaris_2018; salinity tolerance; Sampling by hand; Sarcosine; Serine; sn-Glycero-3-phosphocholine; Sodium; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Strongylocentrotus_droebachiensis_2018; Succinate, per wet mass; Sulfate; Tank number; tau-Methylhistidine; Taurine; Temperature, water; Threonine; Treatment: salinity; Trimethylamine N-oxide; Tryptophan; Type of study; Tyrosine; Valine; VID; Visual identification  (1)
  • Abundance change; Alkalinity, total; Aragonite saturation state; Asterias rubens; Asterias rubens, survival; Balanus improvisus; Balanus improvisus, plate, growth rate; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; Entire community; Experiment; Fucus vesiculosus; Fucus vesiculosus, length, growth rate; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Mesocosm or benthocosm; Mortality/Survival; Mytilus edulis; Mytilus edulis, shell length, growth rate; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Replicate; Rocky-shore community; Salinity; Season; Temperate; Temperature; Temperature, water; Treatment; Type of study  (1)
  • Acid-base regulation; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Automated CO2 analyzer (CIBA-Corning 965, UK); Benthic animals; Benthos; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure; Carbon dioxide, partial pressure, standard deviation; Coast and continental shelf; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Identification; Laboratory experiment; Mollusca; Mytilus edulis; Mytilus edulis, area, dissolved; Mytilus edulis, dissolution severity; Mytilus edulis, extrapallial fluid bicarbonate; Mytilus edulis, extrapallial fluid carbonate ion; Mytilus edulis, extrapallial fluid partial pressure of carbon dioxide; Mytilus edulis, extrapallial fluid pH; Mytilus edulis, extrapallial fluid pK; Mytilus edulis, extrapallial fluid total carbon; Mytilus edulis, haemolymph, apparent dissociation constant of carbon acid; Mytilus edulis, haemolymph, bicarbonate ion; Mytilus edulis, haemolymph, calcium ion; Mytilus edulis, haemolymph, carbonate ion; Mytilus edulis, haemolymph, magnesium ion; Mytilus edulis, haemolymph, partial pressure of carbon dioxide; Mytilus edulis, haemolymph, pH; Mytilus edulis, haemolymph, potassium ion; Mytilus edulis, haemolymph, sodium ion; Mytilus edulis, haemolymph, total dissolved inorganic carbon; Mytilus edulis, shell length; Mytilus edulis, weight, dry; Mytilus edulis, weight, shell; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric titration, VINDTA (marianda); Replicates; Salinity; Scanning electron microscope (SEM); Single species; SOMMA autoanalyzer; Temperate; Temperature, water; WTW 340i pH-analyzer and WTW SenTix 81-electrode  (1)
  • PANGAEA  (5)
Document type
Keywords
Publisher
  • PANGAEA  (5)
Years
  • 1
    Publication Date: 2023-01-13
    Description: The HydroC® CO2 sensor was deployed from a pontoon at the waterfront of the GEOMAR west shore building into Kiel Fjord, Western Baltic Sea (Kiel, Germany; 54°19'48.78"N, 010° 8'59.44"E). Since the pontoon is floating the deployment depth of the sensor was constant at 1m. Data of two deployment intervals are published here: 1) February 2015 - May 2015 2) August 2015 - January 2016 This dataset is part of a dataset collection. Please read the documentation in Kiel fjord carbonate chemistry data between 2015 (February) and 2016 (January) doi:10.1594/PANGAEA.876551 for details on sampling, measurement and data processing.
    Keywords: Carbon dioxide, partial pressure; CO2S; CO2 Sensor; DATE/TIME; DEPTH, water; HydroC pCO2 sensor, CONTROS; Kiel Fjord; Kiel-Fjord_GEOMAR
    Type: Dataset
    Format: text/tab-separated-values, 605356 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-13
    Description: The HydroC® CO2 sensor was deployed from a pontoon at the waterfront of the GEOMAR west shore building into Kiel Fjord, Western Baltic Sea (Kiel, Germany; 54°19'48.78"N, 010° 8'59.44"E). Since the pontoon is floating the deployment depth of the sensor was constant at 1m. Data of three deployment intervals are published here: 1) July 2012 - December 2012 2) April 2013 - June 2013 3) November 2013 – January 2015 Data are processed and corrected, for documentation and graphical overview see further details.
    Keywords: Carbon dioxide, partial pressure; CO2S; CO2 Sensor; DATE/TIME; DEPTH, water; HydroC pCO2 sensor, CONTROS; Kiel Fjord; Kiel-Fjord_GEOMAR
    Type: Dataset
    Format: text/tab-separated-values, 23738 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-11-08
    Description: Laboratory experiments were conducted in the climate chambers at GEOMAR Helmholtz Centre for Ocean Research Kiel in the time between March and November 2018. Experiments were designed to study the effect of long-term (1 month) exposure to low salinity in osmoconforming invertebrates. The study organisms (Asterias rubens, Mytilus edulis, Littorina littorea, Diadumene lineata, Strongylocentrotus droebachiensis and Psammechinus milliaris) were collected in Kiel Fjord, Eckernförder Bight or the Kattegat from spring to autumn 2018. Organisms were acclimated to climate chamber conditions for 1 week (under habitat salinity, 14˚C, constant aeration) and then subjected to salinity acclimation for 1-2 weeks until the final salinity treatment level was reached. Then different salinity treatments were maintained for 4 weeks. Water physiochemistry (temperature, salinity, pH, nitrite, nitrate, phosphate) was recorded frequently. After the experiment, samples were taken from tissues to measure total osmolality (mosmol/kg) with an osmomat, and inorganic ions (mmol/kg or µmol/g wet mass). Anions were measured with a novel protocol via ion chromatography, cations were measured via flame photometry. Organic osmolytes were measured via 1H-NMR.
    Keywords: 1H NMR spectroscopy; Acetate, per wet mass; Adenosine diphosphate, per wet mass; Adenosine monophosphate, per wet mass; Adenosine triphosphate, per wet mass; Alanine; Anserine; Arginine; Asparagine; Aspartic acid; Asterias_rubens_2018; Baltic Sea, Eckernförde Bay; Baltic Sea, Kattegat; BD; beta-Alanine; Betaine; Bromide; Calcium; Calculated average/mean values; Carnitine; cellular volume regulation; Chloride; Choline; Climate change; Creatine; Creatinephosphate; Creatinine; Date/time end, experiment; Date/time start, experiment; Diadumene_lineata_2018; Dimethylamine; Dimethylsulfone; Dredge, benthos; Event label; Flame photometry; Fluoride; Freeze-depression osmometer, Gonotec, Osmomat 030; Glutamic acid; Glutamine; Glycine; HAND; Histamine; Homarine 5; Homocysteine; Homoserine; Hydroxyacetone; Hypotaurine; Individual code; Inosine; invertebrates; Ion chromatography; Isoleucine; Kieler Bucht; Laboratory experiment; Lactate, per wet mass; L-Arginine; Leucine; Littorina_littorea_2018; Lysine; Malonate; Medium; Metabolite, unassigned; Methylamine; Methylmalonate; Mytilus_edulis_2018; Nitrate; N-Methylhydantoin; O-Acetylcholine; O-Phosphocholine; Ornithine; osmoconformer; Osmolality; osmolytes; osmoregulation; Phenylalanine; Phosphate; pi-Methylhistidine; Potassium; Proline; Psammechinus_miliaris_2018; salinity tolerance; Sampling by hand; Sarcosine; Serine; sn-Glycero-3-phosphocholine; Sodium; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Strongylocentrotus_droebachiensis_2018; Succinate, per wet mass; Sulfate; Tank number; tau-Methylhistidine; Taurine; Temperature, water; Threonine; Treatment: salinity; Trimethylamine N-oxide; Tryptophan; Type of study; Tyrosine; Valine; VID; Visual identification
    Type: Dataset
    Format: text/tab-separated-values, 5452 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-15
    Description: The plea for using more “realistic,” community‐level, investigations to assess the ecological impacts of global change has recently intensified. Such experiments are typically more complex, longer, more expensive, and harder to interpret than simple organism‐level benchtop experiments. Are they worth the extra effort? Using outdoor mesocosms, we investigated the effects of ocean warming (OW) and acidification (OA), their combination (OAW), and their natural fluctuations on coastal communities of the western Baltic Sea during all four seasons. These communities are dominated by the perennial and canopy‐forming macrophyte Fucus vesiculosus—an important ecosystem engineer Baltic‐wide. We, additionally, assessed the direct response of organisms to temperature and pH in benchtop experiments, and examined how well organism‐level responses can predict community‐level responses to the dominant driver, OW. OW affected the mesocosm communities substantially stronger than acidification. OW provoked structural and functional shifts in the community that differed in strength and direction among seasons. The organism‐level response to OW matched well the community‐level response of a given species only under warm and cold thermal stress, that is, in summer and winter. In other seasons, shifts in biotic interactions masked the direct OW effects. The combination of direct OW effects and OW‐driven shifts of biotic interactions is likely to jeopardize the future of the habitat‐forming macroalga F. vesiculosus in the Baltic Sea. Furthermore, we conclude that seasonal mesocosm experiments are essential for our understanding of global change impact because they take into account the important fluctuations of abiotic and biotic pressures.
    Keywords: Abundance change; Alkalinity, total; Aragonite saturation state; Asterias rubens; Asterias rubens, survival; Balanus improvisus; Balanus improvisus, plate, growth rate; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; Entire community; Experiment; Fucus vesiculosus; Fucus vesiculosus, length, growth rate; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Mesocosm or benthocosm; Mortality/Survival; Mytilus edulis; Mytilus edulis, shell length, growth rate; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Replicate; Rocky-shore community; Salinity; Season; Temperate; Temperature; Temperature, water; Treatment; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 1200 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Thomsen, Jörn; Gutowska, Magdalena A; Saphörster, J; Heinemann, Agnes; Trübenbach, Katja; Fietzke, Jan; Hiebenthal, Claas; Eisenhauer, Anton; Körtzinger, Arne; Wahl, Martin; Melzner, Frank (2010): Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences, 7(11), 3879-3891, https://doi.org/10.5194/bg-7-3879-2010
    Publication Date: 2024-03-15
    Description: CO2 emissions are leading to an acidification of the oceans. Predicting marine community vulnerability towards acidification is difficult, as adaptation processes cannot be accounted for in most experimental studies. Naturally CO2 enriched sites thus can serve as valuable proxies for future changes in community structure. Here we describe a natural analogue site in the Western Baltic Sea. Seawater pCO2 in Kiel Fjord is elevated for large parts of the year due to upwelling of CO2 rich waters. Peak pCO2 values of 〉230 Pa (〉2300 µatm) and pHNBS values of 〈7.5 are encountered during summer and autumn, average pCO2 values are ~70 Pa (~700 µatm). In contrast to previously described naturally CO2 enriched sites that have suggested a progressive displacement of calcifying auto- and heterotrophic species, the macrobenthic community in Kiel Fjord is dominated by calcifying invertebrates. We show that blue mussels from Kiel Fjord can maintain control rates of somatic and shell growth at a pCO2 of 142 Pa (1400 µatm, pHNBS = 7.7). Juvenile mussel recruitment peaks during the summer months, when high water pCO2 values of ~100 Pa (~1000 µatm) prevail. Our findings indicate that calcifying keystone species may be able to cope with surface ocean pHNBS values projected for the end of this century when food supply is sufficient. However, owing to non-linear synergistic effects of future acidification and upwelling of corrosive water, peak seawater pCO2 in Kiel Fjord and many other productive estuarine habitats could increase to values 〉400 Pa (〉4000 µatm). These changes will most likely affect calcification and recruitment, and increase external shell dissolution.
    Keywords: Acid-base regulation; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Automated CO2 analyzer (CIBA-Corning 965, UK); Benthic animals; Benthos; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure; Carbon dioxide, partial pressure, standard deviation; Coast and continental shelf; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Identification; Laboratory experiment; Mollusca; Mytilus edulis; Mytilus edulis, area, dissolved; Mytilus edulis, dissolution severity; Mytilus edulis, extrapallial fluid bicarbonate; Mytilus edulis, extrapallial fluid carbonate ion; Mytilus edulis, extrapallial fluid partial pressure of carbon dioxide; Mytilus edulis, extrapallial fluid pH; Mytilus edulis, extrapallial fluid pK; Mytilus edulis, extrapallial fluid total carbon; Mytilus edulis, haemolymph, apparent dissociation constant of carbon acid; Mytilus edulis, haemolymph, bicarbonate ion; Mytilus edulis, haemolymph, calcium ion; Mytilus edulis, haemolymph, carbonate ion; Mytilus edulis, haemolymph, magnesium ion; Mytilus edulis, haemolymph, partial pressure of carbon dioxide; Mytilus edulis, haemolymph, pH; Mytilus edulis, haemolymph, potassium ion; Mytilus edulis, haemolymph, sodium ion; Mytilus edulis, haemolymph, total dissolved inorganic carbon; Mytilus edulis, shell length; Mytilus edulis, weight, dry; Mytilus edulis, weight, shell; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Potentiometric titration, VINDTA (marianda); Replicates; Salinity; Scanning electron microscope (SEM); Single species; SOMMA autoanalyzer; Temperate; Temperature, water; WTW 340i pH-analyzer and WTW SenTix 81-electrode
    Type: Dataset
    Format: text/tab-separated-values, 4825 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...