GLORIA

GEOMAR Library Ocean Research Information Access

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley-Blackwell  (28)
  • PANGAEA  (4)
Document type
Keywords
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wekerle, Claudia; Wang, Qiang; von Appen, Wilken-Jon; Danilov, Sergey; Schourup-Kristensen, Vibe; Jung, Thomas (2017): Eddy-Resolving Simulation of the Atlantic Water Circulation in the Fram Strait With Focus on the Seasonal Cycle. Journal of Geophysical Research: Oceans, 122(11), 8385-8405, https://doi.org/10.1002/2017JC012974
    Publication Date: 2023-03-16
    Description: Eddy driven recirculation of Atlantic Water (AW) in the Fram Strait modifies the amount of heat that reaches the Arctic Ocean, but is difficult to constrain in ocean models due to very small Rossby radius there. In this study we explore the effect of resolved eddies on the AW circulation in a locally eddy-resolving simulation of the global Finite-Element-Sea ice-Ocean-Model (FESOM) integrated for the years 2000-2009, by focusing on the seasonal cycle. An eddy-permitting simulation serves as a control run. Our results suggest that resolving local eddy dynamics is critical to realistically simulate ocean dynamics in the Fram Strait. Strong eddy activity simulated by the eddy-resolving model, with peak in winter and lower values in summer, is comparable in magnitude and seasonal cycle to observations from a long-term mooring array, whereas the eddy-permitting simulation underestimates the observed magnitude. Furthermore, a strong cold bias in the central Fram Strait present in the eddy-permitting simulation is reduced due to resolved eddy dynamics, and AW transport into the Arctic Ocean is increased with possible implications for the Arctic Ocean heat budget. Given the good agreement between the eddy-resolving model and measurements, it can help filling gaps that point-wise observations inevitably leave. For example, the path of the West Spitsbergen Current offshore branch, measured in the winter months by the mooring array, is shown to continue cyclonically around the Molloy Deep in the model, representing the major AW recirculation branch in this season.
    Keywords: AWI_PhyOce; File content; File format; File name; File size; FRAM; Fram Strait; Fram-Strait; FRontiers in Arctic marine Monitoring; Physical Oceanography @ AWI; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 100 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven | Supplement to: Wang, Qiang; Danilov, Sergey; Jung, Thomas; Kaleschke, Lars; Wernecke, Andreas (2016): Sea ice leads in the Arctic Ocean: Model assessment, interannual variability and trends. Geophysical Research Letters, 43(13), 7019-7027, https://doi.org/10.1002/2016GL068696
    Publication Date: 2023-03-16
    Description: Northern Hemisphere sea ice from a Finite-Element Sea-Ice Ocean Model (FESOM) 4.5 km resolution simulation carried out by researchers from Alfred Wegener Institute (AWI), Germany. Concentration is shown with color; thickness is shown with shading. A global 1 degree mesh is used, with the "Arctic Ocean" locally refined to 4.5 km. South of CAA and Fram Strait the resolution is not refined in this simulation. The animation indicates that the 4.5 km model resolution helps to represent the small scale sea ice features, although much higher resolution is required to fully resolve the ice leads. The animation is created by Michael Böttinger from DKRZ (https://www.dkrz.de).
    Keywords: Arctic; DATE/TIME; File content; File format; File size; pan-Arctic; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 8 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Scholz, Patrick; Lohmann, Gerrit; Wang, Qiang; Danilov, Sergey (2013): Evaluation of a Finite-Element Sea-Ice Ocean Model (FESOM) set-up to study the interannual to decadal variability in the deep-water formation rates. Ocean Dynamics, 63(4), 347-370, https://doi.org/10.1007/s10236-012-0590-0
    Publication Date: 2023-01-13
    Description: The characteristics of a global set-up of the Finite-Element Sea-Ice Ocean Model under forcing of the period 1958-2004 are presented. The model set-up is designed to study the variability in the deep-water mass formation areas and was therefore regionally better resolved in the deep-water formation areas in the Labrador Sea, Greenland Sea, Weddell Sea and Ross Sea. The sea-ice model reproduces realistic sea-ice distributions and variabilities in the sea-ice extent of both hemispheres as well as sea-ice transport that compares well with observational data. Based on a comparison between model and ocean weather ship data in the North Atlantic, we observe that the vertical structure is well captured in areas with a high resolution. In our model set-up, we are able to simulate decadal ocean variability including several salinity anomaly events and corresponding fingerprint in the vertical hydrography. The ocean state of the model set-up features pronounced variability in the Atlantic Meridional Overturning Circulation as well as the associated mixed layer depth pattern in the North Atlantic deep-water formation areas.
    Keywords: File format; File name; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 32 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-30
    Description: Mesoscale eddies are important for many aspects of the dynamics of the Arctic Ocean. These include the maintenance of the halocline and the Atlantic Water boundary current through lateral eddy fluxes, shelf-basin exchanges, transport of biological material and sea ice, and the modification of the sea-ice distribution. Here we review what is known about the mesoscale variability and its impacts in the Arctic Ocean in the context of an Arctic Ocean responding rapidly to climate change. In addition, we present the first quantification of eddy kinetic energy (EKE) from moored observations across the entire Arctic Ocean, which we compare to output from an eddy resolving numerical model. We show that EKE is largest in the northern Nordic Seas/Fram Strait and it is also elevated along the shelfbreak of the Arctic Circumpolar Boundary Current, especially in the Beaufort Sea. In the central basins it is 100-1000 times lower. Except for the region affected by southward sea-ice export south of Fram Strait, EKE is stronger when sea-ice concentration is low compared to dense ice cover. Areas where conditions typical in the Atlantic and Pacific prevail will increase. Hence, we conclude that the future Arctic Ocean will feature more energetic mesoscale variability. This table provides (eddy) kinetic energy in the Arctic Ocean calculated from moorings and a numerical model across the entire record and averaged over certain conditions (seasons, ice concentration). The calculations are explained in the manuscript (Eddies and the distribution of eddy kinetic energy in the Arctic Ocean). The used mooring data was compiled from six different sources as listed below and identified in the table based on the Source ID.
    Keywords: 250_MOOR; 293-S1_MOOR; 293-X1_MOOR; 293-X2_MOOR; 293-X3_MOOR; 295-S2_MOOR; A01_MOOR; AK1-1_MOOR; AK2-1_MOOR; AK3-1_MOOR; AK4-1_MOOR; AK5-1_MOOR; AK6-1_MOOR; AK7-1_MOOR; Akademik Tryoshnikov; AM1-91_MOOR; AM2-91_MOOR; AO1-92_MOOR; Arctic Ocean; ARK-XIV/2; ARK-XVIII/1; ARK-XXIX/3; ARK-XXX/1.2; ARK-XXX/2, GN05; ARK-XXXI/4; ATWAIN200_MOOR; AWI_PhyOce; AWI401-1_MOOR; AWI402-1_MOOR; AWI403-1_MOOR; AWI403-2_MOOR; AWI404-1_MOOR; AWI406-1_MOOR; AWI410-2_MOOR; AWI411-2_MOOR; AWI412-4_MOOR; AWI413-4_MOOR; AWI415-1_MOOR; AWI416-1_MOOR; AWI417-1_MOOR; AWI418-1_MOOR; BaffinBay_2_MOOR; BaffinBay_MOOR; BarrowSt_81_MOOR; BarrowSt_C_MOOR; BarrowSt_N_MOOR; BarrowSt_S_MOOR; BarrowSt_SC_MOOR; BarrowSt_Ss_MOOR; BG_a_MOOR; BG_b_MOOR; BG_c_MOOR; BG_d_MOOR; BI3_MOOR; BR1_MOOR; BR2_MOOR; BR3_MOOR; BRA_MOOR; BRB_MOOR; BRG_MOOR; BRK_MOOR; BS2_MOOR; BS3_MOOR; BS4_MOOR; BS5_MOOR; BS6_MOOR; BSO1_MOOR; BSO2_MOOR; BSO3_MOOR; BSO4_MOOR; BSO5_MOOR; C1_MOOR; C2_MOOR; C3_MOOR; C4_MOOR; C5_MOOR; C6_MOOR; CA04_MOOR; CA05_MOOR; CA06_MOOR; CA07_MOOR; CA08_MOOR; CA10_MOOR; CA11_MOOR; CA12_MOOR; CA13_MOOR; CA15_MOOR; CA16_MOOR; CA20_MOOR; CM-1_MOOR; CM-2_MOOR; CS1_MOOR; CS-1A_MOOR; CS2_MOOR; CS-2A_MOOR; CS3_MOOR; CS-3A_MOOR; CS4_MOOR; CS5_MOOR; Depth, bottom/max; Depth, top/min; DEPTH, water; DS_TUBE8_MOOR; Duration; EA1_MOOR; EA2_MOOR; EA3_MOOR; EA4_MOOR; EBC_MOOR; eddies; eddy kinetic energy; Eddy kinetic energy, 2000-2010; Eddy kinetic energy, 2010-2020; Eddy kinetic energy, at depth; Eddy kinetic energy, autumn; Eddy kinetic energy, ice; Eddy kinetic energy, mean; Eddy kinetic energy, model bandpass; Eddy kinetic energy, model online; Eddy kinetic energy, no ice; Eddy kinetic energy, some ice; Eddy kinetic energy, spring; Eddy kinetic energy, summer; Eddy kinetic energy, winter; EGN-1; EGS-1; EGS1-2; EGS2-1; EGS4-1; ELEVATION; F10-1; F1-1; F11_MOOR; F11-2; F12_MOOR; F12-1; F13_MOOR; F13-1; F14_MOOR; F14-1; F15-1; F16-1; F17_MOOR; F2-1; F3-1; F4-1; F5-1; F6-1; F7-1; F8-1; F9-1; FB2b_MOOR; FB6_MOOR; First year of observation; FRAM; FRontiers in Arctic marine Monitoring; FRS782_MOOR; FSC1_MOOR; FSC2_MOOR; FSC3_MOOR; FSC4_MOOR; GS-3_2_MOOR; HG-IV-S-1; High-frequency kinetic energy; HSNE60_MOOR; HudsonBay_MOOR; HudsonStrait_MOOR; I1_MOOR; I2_MOOR; I3_MOOR; IdF1-1; IdF2-1; IdF3-1; IdF4-1; ISWRIG_MOOR; Karasik-2015; KS02_MOOR; KS04_MOOR; KS06_MOOR; KS08_MOOR; KS10_MOOR; KS12_MOOR; KS14_MOOR; L97; LA97/2; Lance; Last year of observation; LATITUDE; LM3_MOOR; LONGITUDE; Low-frequency kinetic energy; M11_MOOR; M12_MOOR; M13_MOOR; M14_MOOR; M15_MOOR; M16_MOOR; M3_MOOR; M5_MOOR; M6_MOOR; M9a_MOOR; MA2B_MOOR; MB1B_MOOR; MB2B_MOOR; MB4B_MOOR; Mean kinetic energy; MOOR; Mooring; Mooring (long time); MOORY; N198_2_MOOR; N198_MOOR; N525_MOOR; N541_MOOR; NABOS_2015_AK1-1, NABOS_2018_AK1-1; NABOS_2015_AK2-1, NABOS_2018_AK2-1; NABOS_2015_AK3-1, NABOS_2018_AK3-1; NABOS_2015_AK4-1, NABOS_2018_AK4-1; NABOS_2015_AK5-1, NABOS_2018_AK5-1; NABOS_2015_AK6-1,NABOS_2018_AK6-1; NABOS_2015_AK7-1, NABOS_2018_AK7-1; NABOS, AT2015; NABOS 2015; Nansen-2015; North Greenland Sea; NPEO_MOOR; NWNA_MOOR; NWNB_MOOR; NWNC_MOOR; NWND_MOOR; NWNE_MOOR; NWNF_MOOR; NWNG_MOOR; NWSB_MOOR; NWSD_MOOR; NWSE_2_MOOR; NWSE_MOOR; OLIK-1_MOOR; OSL2a_MOOR; OSL2f_MOOR; Physical Oceanography @ AWI; Polarstern; PS100; PS100/039-2, PS114_25-1,ARKR02-01; PS100/045-1, PS114_29-2; PS100/047-1, PS114_40-2; PS100/053-1, PS114_36-1; PS100/073-1, PS109_20-1; PS100/106-1, PS114_23-2; PS100/142-1, PS109_139-1; PS100/180-2, PS109_111-1; PS100/181-1, PS109_112-1; PS100/182-1, PS109_113-1; PS100/183-1, PS109_114-1; PS109; PS109_133-1, PS114_52-1; PS109_138-2, PS114_53-1; PS109_148-1, PS114_60-2; PS114; PS52; PS62; PS94; PS99/070-1, PS107_3-1; PS99.2; R071_MOOR; R1-1; R2-1; R290_MOOR; R3-1; R333_MOOR; R356_MOOR; R4-1; R5-1; Reference/source; SS-5_MOOR; StA_MOOR; Station label; Stor_MOOR; Total kinetic energy; V-319_MOOR; Velocity, east; Velocity, north; Vilk_MOOR; WBC_MOOR; WG1_MOOR; WG15_MOOR; WG4_MOOR; Wunsch-NN1_MOOR; Wunsch-NN2_MOOR; Y1_MOOR; Y2_MOOR; YP_MOOR
    Type: Dataset
    Format: text/tab-separated-values, 4806 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0269-3879
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A procedure for the extraction and high performance liquid chromatographic (HPLC) determination of the photodynamic therapeutic agent 5,10,15,20-tetra(m-hydroxyphenyl)chlorin in human, rat and mouse tissues following intravenous administration of the drug is described. The tissue (tumour, skin, muscle and liver) was homogenized and extracted into a mixture of methanol:dimethyl sulphoxide:water (32:8:1 by vol.) containing, 5,10,15,20-tetra(p-hydroxyphenyl)chlorin as the internal standard. The precipitated proteins were removed by centrifugation and the supernatant was separated by reversed phase HPLC on a Hypersil-ODS column with 77% (v/v) acetonitrile in 0.1% trifluoroacetic acid as the mobile phase. The solute was detected with high sensitivity and specificity by a UV-VIS detector set at 423 nm.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 53 (1994), S. 1391-1392 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0269-3879
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A high performance liquid chromatographic method for the determination of the photodynamic chemotherapeutic agent 5,10,15,20-tetra(m-hydroxyphenyl)chlorin (m-THPC) in human plasma following intravenous infusion is described. The procedure involves extraction of the drug in plasma with methanol/dimethyl sulphoxide (4:1 v/v) containing 5,10,15,20-tetra(p-hydroxyphenyl)clorin as the internal standard and separation on a C18 reversed phase column with acetonitrile:0.1% trifluoroacetic acid (77:23 v/v) as the mobile phase. The drug was detected specifically and sensitively at its absorption maximum of 423 nm with a detection limit of 15 ng/mL (signal-to-noise ratio of 5). The intra- and inter-assay coefficients of variation (CV) on analysis of a plasma spiked with m-THPC (1 μg/mL) were 2.3 and 3.4% (n=6), respectively.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 55 (1995), S. 1111-1116 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A photosensitive polysiloxaneimide precursor was synthesized from oxydianiline, bis(p-aminophenoxy)dimethylsilane, and a diacid chloride. This diacid chloride was prepared by the reaction of thionyl chloride with a diacid, which resulted from the reaction of pyromellitic dianhydride with hydroxyethylacrylate in N-methylpyrrolidone (NMP). The adhesion properties between polyimide and substrates such as SiO2 wafer were improved with introduction of siloxane moiety into the polyimide chain. The dielectric constant decreased with increasing siloxane moiety content. The photocrosslinking reaction results show that an 88-90% gel fraction was reached under the irradiation of a high-pressure mercury lamp. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-10-12
    Description: Correct representations of root functioning, such as root water uptake and hydraulic redistribution, are critically important for modeling the responses of vegetation to droughts and seasonal changes in soil moisture content. However, these processes are poorly represented in global land surface models. In this study, we incorporated two root functions: a root water uptake function which assumes root water uptake efficiency varies with rooting depth, and a hydraulic redistribution function into a global land surface model, CABLE. The water uptake function developed by Lai and Katul (2000) was also compared with the default one (see Wang et al., 2010) that assumes that efficiency of water uptake per unit root length is constant. Using eddy flux measurements of CO2 and water vapor fluxes at three sites experiencing different patterns of seasonal changes in soil water content, we showed that the two root functions significantly improved the agreement between the simulated fluxes of net ecosystem exchange and latent heat flux and soil moisture dynamics with those observed during the dry season while having little impact on the model simulation during the wet seasons at all three sites. Sensitivity analysis showed that varying several model parameters influencing soil water dynamics in CABLE did not significantly affect the model's performance. We conclude that these root functions represent a valuable improvement for land surface modeling and should be implemented into CABLE and other land surface models for studying carbon and water dynamics where rainfall varies seasonally or interannually.
    Print ISSN: 0148-0227
    Topics: Biology , Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-08-08
    Description: A cadmium–thiocyanate complex, poly[(1-cyanomethyl-4-aza-1-azoniabicyclo[2.2.2]octane-κ 4 N )octakis-μ 2 -thiocyanato-κ 8 N : S ;κ 8 S : N -tricadmium(II)], [Cd 3 (C 8 H 14 N 3 ) 2 (NCS) 8 ] n , was synthesized by the reaction of 1-cyanomethyl-4-aza-1-azoniabicyclo[2.2.2]octane chloride, cadmium nitrate tetrahydrate and potassium thiocyanide in aqueous solution. In the crystal structure, there are two independent types of Cd II cation (one on a centre of inversion and one in a general position) and both are in distorted octahedral coordination environments, coordinated by N and S atoms from different ligands. Neighbouring Cd II cations are linked together by thiocyanate bridges to form a two-dimensional network. Hydrogen-bonding interactions are involved in the formation of a three-dimensional supramolecular network.
    Print ISSN: 0108-2701
    Electronic ISSN: 1600-5759
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...