GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-01-09
    Description: We present Os and Sr isotopes and Mg, Os, and Sr concentrations for ridge-crest high-temperature and diffuse hydrothermal fluids, plume fluids and ridge-flank warm spring fluids from the Juan de Fuca Ridge. The data are used to evaluate the extent to which (1) the high- and low-temperature hydrothermal alteration of mid-ocean ridge basalts (MORBs) provides Os to the deep oceans, and (2) hydrothermal contributions of non-radiogenic Os and Sr to the oceans are coupled. The Os and Sr isotopic ratios of the high-temperature fluids (265-353°C) are dominated by basalts (187Os/188Os = 0.2; 87Sr/86Sr = 0.704) but the concentrations of these elements are buffered approximately at their seawater values. The 187Os/188Os of the hydrothermal plume fluids collected ~1 m above the orifice of Hulk vent is close to the seawater value (=1.05). The low-temperature diffuse fluids (10-40°C) associated with ridge-crest high-temperature hydrothermal systems on average have [Os] = 31 fmol/kg, 187Os/188Os = 0.9 and [Sr] = 86 µmol/kg, 87Sr/86Sr = 0.709. They appear to result from mixing of a high-temperature fluid and a seawater component. The ridge-flank warm spring fluids (10-62°C) on average yield [Os] = 22 fmol/kg, 187Os/188Os = 0.8 and [Sr] = 115 µmol/kg, 87Sr/86Sr = 0.708. The data are consistent with isotopic exchange of Os and Sr between basalt and circulating seawater during low-temperature hydrothermal alteration. The average Sr concentration in these fluids appears to be similar to seawater and consistent with previous studies. In comparison, the average Os concentration is less than seawater by more than a factor of two. If these data are representative they indicate that low-temperature alteration of MORB does not provide adequate non-radiogenic Os and that another source of mantle Os to the oceans must be investigated. At present, the magnitude of non-radiogenic Sr contribution via low-temperature seawater alteration is not well constrained. If non-radiogenic Sr to the oceans is predominantly from the alteration of MORB, our data suggest that there must be a different source of non-radiogenic Os and that the Os and Sr isotope systems in the oceans are decoupled.
    Keywords: 168-1026B; Calculated; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP/ODP/IODP sample designation; ICP-OES, Inductively coupled plasma - optical emission spectrometry; Ion chromatography; Joides Resolution; Juan de Fuca Ridge, North Pacific Ocean; Leg168; Magnesium; Ocean Drilling Program; ODP; Osmium; Osmium-187/Osmium-188, error; Osmium-187/Osmium-188 ratio; Sample code/label; Secondary ion mass spectrometry (SIMS); Strontium; Strontium-87/Strontium-86 ratio; Strontium-87/Strontium-86 ratio, error; Temperature, water; Thermal Ionization Mass Spectrometry (TIMS)
    Type: Dataset
    Format: text/tab-separated-values, 22 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The early miocene Tecuya volcanic center in the southern San Joaquin basin of California consists of flows and tuffs of basalt and rhyolite that erupted, closely spaced in time, in both submarine and subaerial conditions. The rhyolites are overlain by the basalts and constitute approximately 45% of a total of at least 180 km3 of the Tecuya volcanic rocks. The basalts have ε Nd(t) values of +2 to +6 and (87Sr/86Sr)i values between 0.7035 and 0.7052. These rocks show LREE enrichment [(La/Yb)N =2.4–5.5; La=28–150 times chondrite] and higher Th/U, Th/Ta, Rb/Ta, Ba/Ta, Cs/Rb but lower K/Rb ratios than MORB. Combined major- and trace-element, and Sr−Nd isotopic data suggest the involvement of subcontinental lithosphere, depleted upper mantle source (MORB), and local continental crust in the basalt petrogenesis. ε Nd(t) values in rhyolites vary from +1.5 to +3.7 while (87Sr/86Sr)i ratios range from 0.7051 to 0.7064. The rhyolites display LREE enrichment [(La/Yb)N=10; La=100 times chondrite] along with a distinct negative Eu anomaly (Eu/Eu*=0.75) and depletion of Ti and P. Mixing relations in (87/86Sr)i − ε Nd(t) space among basalts, rhyolites, and local continental crust indicate that the Tecuya rhyolites were produced by assimilation of variable amounts of continental crust by MORB-related magmas and subcontinental lithosphere-derived melts. This conclusion is supported by the synchroneity of Tecuya volcanism at 22 Ma with interaction of a segment of the East Pacific Rise along the southern California margin. The Tecuya volcanic rocks thus provide an example for the generation of rhyolitic melts owing to crustal assimilation by basaltic melts during mid-oceanic ridge-induced magmatism along a continental margin.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 117 (1994), S. 45-55 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract We report the results of a Sm-Nd isotopic, major element and rare earth element (REE) study of the Older Metamorphic Group (OMG) tonalite-amphibolite association of the eastern Indian Craton. The Older Metamorphic Tonalite Gneisses (OMTG) have been previously dated to be 3.8 Ga using Sm-Nd isotope systematies, and 3.2–3.4 Ga by Rb-Sr and Pb-Pb dating. The results of this study indicate that the protoliths of the OMG amphibolites are 3.3 Ga isochron age=3.30±0.06 Ga, ɛNd= +0.9 ± 0.7), and therefore, the OMTG, which intrude into the associated amphibolites, cannot be any older than 3.3 Ga. The amphibolites display light REE enrichment ((Ce/Yb)N=2.2–6.7; La=30–100 x chondrite) and nearly flat heavy REE patterns ((Tb/Lu)N=1.2–1.9); the basaltic parents of the amphibolites were probably generated by the partial melting of a spinel lherzolite mantle. Strong linear relationships between the amphibolites and tonalites in 147Sm/144Nd-143Nd/144Nd space (isochron age =3.29±0.04 Ga, ɛNd= +0.8 ± 0.8) imply that they are genetically related. The tonalites display fractionated REE patterns (La=100–300 x chondrite) with moderate heavy REE depletions ((Tb/Lu)N=1.9–3.4). The isotopic, major element and REE data are consistent with the derivation of the OMTG from partial melting of OMG amphibolites or equivalent rocks at amphibolegarnet stabilization depths. An initial ɛNd(t) value of +0.9±0.7 for the amphibolites indicates the presence of a slightly depleted mantle source at 3.3 Ga with 147Sm/144Nd. between 0.20 and 0.22. It is suggested that the growth of continental crust in the eastern Indian craton occurred in response to magmatic underplating in a plume setting.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...