GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer Nature  (9)
  • Nature Publishing Group  (5)
  • 11
    Publication Date: 2023-06-02
    Description: Satellite observations covering the last four decades reveal an ocean warming pattern resembling the negative phase of the Pacific Decadal Oscillation. This pattern has therefore been widely interpreted as a manifestation of natural climate variability. Here, we re-examine the observed warming pattern and find that the predominant warming over the subtropical oceans, while mild warming or even cooling over the subpolar ocean, is dynamically consistent with the convergence and divergence of surface water. By comparison of observations, paleo-reconstructions, and model simulations, we propose that the observed warming pattern is likely a short-term transient response to the increased CO2 forcing, which only emerges during the early stage of anthropogenic warming. On centennial to millennial timescales, the subpolar ocean warming is expected to exceed the temporally dominant warming of the subtropical ocean. This delayed but amplified subpolar ocean warming has the potential to reshape the ocean-atmosphere circulation and threaten the stability of marine-terminating ice sheets.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature Geoscience, Springer Nature, pp. 1-10, ISSN: 1752-0894
    Publication Date: 2024-05-06
    Description: There has been extensive research into the nonlinear responses of the Earth system to astronomical forcing during the last glacial cycle. However, the speed and spatial geometry of ice sheet expansion to its largest extent at the Last Glacial Maximum 21 thousand years ago remains uncertain. Here we use an Earth system model with interactive ice sheets to show that distinct initial North American (Laurentide) ice sheets at 38 thousand years ago converge towards a configuration consistent with the Last Glacial Maximum due to feedbacks between atmospheric circulation and ice sheet geometry. Notably, ice advance speed and spatial pattern in our model are controlled by the amount of summer snowfall, which is dependent on moisture transport pathways from the North Atlantic warm pool linked to ice sheet geometry. The consequence of increased summer snowfall on the surface mass balance of the ice sheet is not only the direct increase in accumulation but the indirect reduction in melt through the snow/ice–albedo feedback. These feedbacks provide an effective mechanism for ice growth for a range of initial ice sheet states and may explain the rapid North American ice volume increase during the last ice age and potentially driving growth during previous glacial periods.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Scientific Reports, Springer Nature, 13(1), pp. 18100-18100, ISSN: 2045-2322
    Publication Date: 2024-04-22
    Description: Climate indices are often used as a climate monitoring tool, allowing us to understand how the frequency, intensity, and duration of extreme weather events are changing over time. Here, based on complex statistical analysis we identify highly correlated significant pairs of compound events at the highest spatial resolution, on a monthly temporal scale across Europe. Continental-scale monthly analysis unleashes information on compound events such as high-risk zones, hotspots, monthly shifts of hotspots and trends, risk exposure to land cover and population, and identification of maximum increasing trends. While there are many studies on single or compound climate extremes there are only a few studies that addresses the relationship between pairs of hazards, the incorporation of bioclimatic indices, the determination of a grid best-fit copula approach, and the outlining relevance of this work of compound event risks with exposures. In this respect, here, using 27-bivariate and 10-trivariate copula models, we show that the different hazard pairs have high combined risks of indices related to radiation, temperature, evapotranspiration, bioclimatic-based indices, such as the universal thermal climate index, wind chill index, and heat index, mainly over the northern and eastern European countries. Furthermore, we show that over the last 7 decades, agricultural and coastal areas are highly exposed to the risks of defined hotspots of compound events. In some of the hotspots of compound events-identified by clusters, there is no monthly shifts of hotspots, leading to higher impacts when compounded. Future work needs to integrate the framework and process to identify other compound pairs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-03-13
    Description: The cold Last Glacial Maximum, around 20,000 years ago, provides a useful test case for evaluating whether climate models can simulate climate states distinct from the present. However, because of the indirect and uncertain nature of reconstructions of past environmental variables such as sea surface temperature, such evaluation remains ambiguous. Instead, here we evaluate simulations of Last Glacial Maximum climate by relying on the fundamental macroecological principle of decreasing community similarity with increasing thermal distance. Our analysis of planktonic foraminifera species assemblages from 647 sites reveals that the similarity-decay pattern that we obtain when the simulated ice age seawater temperatures are confronted with species assemblages from that time differs from the modern. This inconsistency between the modern temperature dependence of plankton species turnover and the simulations arises because the simulations show globally rather uniform cooling for the Last Glacial Maximum, whereas the species assemblages indicate stronger cooling in the subpolar North Atlantic. The implied steeper thermal gradient in the North Atlantic is more consistent with climate model simulations with a reduced Atlantic meridional overturning circulation. Our approach demonstrates that macroecology can be used to robustly diagnose simulations of past climate and highlights the challenge of correctly resolving the spatial imprint of global change in climate models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...