GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] THE size and shape of mantle upwelling regions provide important constraints on the thermal budget of the Earth and on models of mantle dynamics. Most hotspot tracks are no more than 200-400 km wide, suggesting that upwelling regions are often relatively narrow features, of the order of a few ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: We present a comprehensive major and trace element and Sr–Nd–Pb isotope dataset from the major volcanic units exposed on La Palma and show how geochemical and volcanic evolution can be linked to asthenospheric and lithospheric processes. Lavas from the northern shield (from Basal Complex to Taburiente to Bejenado volcanism, 3–4 Ma to 400 ka) become more alkalic and SiO2-undersaturated with decreasing age, but show little change in MgO-normalized trace element compositions. Their high (Nb,Ta)/U and Ba/Th but low La/Nb ratios suggest assimilation of amphibole, probably in the lithospheric mantle that was metasomatized by earlier melts. Lavas from the Cumbre Vieja unit (〈125 ka) in the southern half of La Palma are more incompatible-element enriched and probably formed through lower degrees of melting than those from the northern shield, which are nearly identical isotopically. Their Nb/U ratios are mostly within the range 47 ± 10, significantly below those of the earlier lavas. In 206Pb/204Pb versus 143Nd/144Nd, 208Pb/204Pb and 208Pb/206Pb isotope diagrams, the Basal Complex rocks and lavas from the adjacent El Hierro island form a separate trend compared with the younger subaerial La Palma lavas. Both groups share a common depleted end-member but require separate, enriched HIMU-like end-members, believed to be located within the asthenosphere. The temporal and spatial variations in the composition of La Palma and El Hierro lavas could be explained within the context of NE-directed plate motion over a zoned Canary plume. After La Palma moved away from the asthenospheric source domain of the Basal Complex, El Hierro formed above the same domain, whereas the younger units on La Palma tapped a distinct asthenospheric domain located further north. The short-lived Bejenado volcano that formed directly after the giant Cumbre Nueva sector collapse at c. 560 ka produced the isotopically most depleted lavas reported from La Palma thus far. Their compositions suggest incorporation of a depleted pyroxenitic component. The Bejenado lavas also extend to the highest Nb/U and Ba/Th and lowest La/Nb ratios of all La Palma lavas, consistent with increased melting of amphibole within the lithospheric mantle or lower crust. We propose that the collapse is related to the migration of magmatism to the south of La Palma, and led to short-term enhanced decompression melting of amphibole and pyroxenite within the lithosphere.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: The 4·0–3·6 Ma Don Manuel igneous complex (DMIC), central Chile, provides a window into igneous processes involved in magma genesis associated with porphyry-style copper mineralization. This study uses petrographic, petrological, geochemical and isotopic data to examine the evolution of magmas from the mid- to lower-crustal source region to shallow emplacement. The data provide evidence for progressive oxidation of magma during differentiation and ascent, fractionation of Cl from S through degassing, and the late-stage, near-solidus removal of Cl from the system. Magmas of basaltic andesite to rhyolite composition were produced by polybaric differentiation of hydrous parental mafic magmas. Variations in crustal differentiation depths led to variable suppression of plagioclase saturation that is recorded in distinctive strontium versus anorthite evolution patterns. Hydrous, derivative magmas generated over a wide range of pressures were episodically emplaced into the shallow crust at depths between 3·5 and 5 km. Intermediate porphyry dikes closely associated with copper mineralization contain diverse crystal cargoes indicating significant magma mixing. These crystal cargoes represent samples of crystal mush entrained from different depths, as well as crystals originating in different magmas and crystals grown in situ from hybridized magmas. Mafic enclaves containing plagioclase and amphibole compositions that match those of the basaltic andesites occur within biotite tonalite, testifying to magma mingling during ascent. Sulfur and chlorine contents of apatite within the different DMIC units record variable degassing and decoupling of volatile components with sulfur showing variations of three orders of magnitude compared with one order of magnitude for chlorine. The hypabyssal nature of the DMIC affords a detailed, integrated record of magmatic differentiation processes occurring within trans-crustal magmatic systems of the sort thought to characterize many crustal arc settings and play a fundamental role in driving porphyry-style copper mineralization.
    Type: Article , PeerReviewed
    Format: archive
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-05-02
    Description: A suite of 48 samples, including both historical and prehistoric lavas and some plutonic rocks, have been analysed from the Cumbre Vieja rift, La Palma, Canary Islands. Additionally, mineral–melt partition coefficients have been measured for clinopyroxene, plagioclase, amphibole, titanite and apatite in selected rocks. The lavas range from basanite to phonolite (SiO2 = 41·2–57·5 wt % and MgO = 10–0·8 wt %) in composition and form coherent, curvilinear major and trace element arrays in variation diagrams, irrespective of eruption age. The mafic lavas have typical ocean island incompatible trace element patterns and Sr, Nd and Pb isotope compositions show little variation but have a HIMU-type character. Generation of the parental magmas is inferred to have involved ∼4% dynamic melting of a garnet lherzolite source that may have previously been metasomatized by melts derived from a recycled mafic component containing residual phlogopite. The major process of differentiation to phonotephrite involved fractional crystallization of basanitic magmas that evolved along the same liquid line of descent under similar pressure–temperature conditions. Numerical simulations using the MELTS algorithm suggest that this occurred across a temperature interval from c. 1320 to 950°C at 400 MPa and an oxygen fugacity equivalent to quartz–fayalite–magnetite (QFM), with an initial H2O content of 0·3 wt %. The later stages of differentiation (〈5 wt % MgO) were dominated by mixing with partial melts of young syenites formed from earlier magma batches. All of the lavas are characterized by 230Th and 226Ra excesses and (230Th/238U) decreases with decreasing Nb/U and increasing SiO2, with no accompanying change in (226Ra/230Th). To explain the observations, we propose a model in which there was a significant role for amphibole, and more importantly accessory titanite, in decre'asing Nb/U, Ce/Pb and Th/U ratios and increasing or buffering (226Ra/230Th) ratios during the later stages of differentiation and magma mixing. These processes all occurred over a few millennia in small magma batches that were repeatedly emplaced within the mid-crust of the Cumbre Vieja rift system prior to rapid transport to the surface.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-02-27
    Description: Seismic tomography and the isotope geochemistry of Cenozoic volcanic rocks suggest the existence of a large, sheet-like region of upwelling in the upper mantle which extends from the eastern Atlantic Ocean to central Europe and the western Mediterranean. A belt of extension and rifting in the latter two areas appears to lie above the intersection of the centre of the upwelling region with the base of the lithosphere. Lead, strontium and neodymium isotope data for all three regions converge on a restricted composition, inferred to be that of the upwelling mantle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Ocean islands, seamounts and volcanic ridges are thought to form above mantle plumes. Yet, this mechanism cannot explain many volcanic features on the Pacific Ocean floor and some might instead be caused by cracks in the oceanic crust linked to the reorganization of plate motions. A distinctive bend in the Hawaiian–Emperor volcanic chain has been linked to changes in the direction of motion of the Pacific Plate, movement of the Hawaiian plume, or a combination of both. However, these links are uncertain because there is no independent record that precisely dates tectonic events that affected the Pacific Plate. Here we analyse the geochemical characteristics of lava samples collected from the Musicians Ridges, lines of volcanic seamounts formed close to the Hawaiian–Emperor bend. We find that the geochemical signature of these lavas is unlike typical ocean island basalts and instead resembles mid-ocean ridge basalts. We infer that the seamounts are unrelated to mantle plume activity and instead formed in an extensional setting, due to deformation of the Pacific Plate. 40Ar/39Ar dating reveals that the Musicians Ridges formed during two time windows that bracket the time of formation of the Hawaiian–Emperor bend, 53–52 and 48–47 million years ago. We conclude that the Hawaiian–Emperor bend was formed by plate–mantle reorganization, potentially triggered by a series of subduction events at the Pacific Plate margins.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: Large igneous province subduction is a rare process on Earth. A modern example is the subduction of the oceanic Hikurangi Plateau beneath the southern Kermadec arc, offshore New Zealand. This segment of the arc has the largest total lava volume erupted and the highest volcano density of the entire Kermadec arc. Here we show that Kermadec arc lavas south of B32°S have elevated Pb and Sr and low Nd isotope ratios, which argues, together with increasing seafloor depth, forearc retreat and crustal thinning, for initial Hikurangi Plateau—Kermadec arc collision B250 km north of its present position. The combined data set indicates that a much larger portion of the Hikurangi Plateau (the missing Ontong Java Nui piece) than previously believed has already been subducted. Oblique plate convergence caused southward migration of the thickened and buoyant oceanic plateau crust, creating a buoyant ‘Hikurangi’ me´lange beneath the Moho that interacts with ascending arc melts.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-01-24
    Description: Discovery of seafloor volcanism west of Buldir Volcano, the westernmost emergent volcano in the Aleutian arc, demonstrates that surface expression of active Aleutian volcanism falls below sea level just west of 175·9°E longitude, but is otherwise continuous from mainland Alaska to Kamchatka. Lavas dredged from newly discovered seafloor volcanoes up to 300 km west of Buldir have end-member geochemical characteristics that provide new insights into the role of subducted basalt as a source component in Aleutian magmas. Western Aleutian seafloor lavas define a highly calc-alkaline series with 50–70% SiO2. Most samples have Mg-numbers [Mg# = Mg/(Mg + Fe)] greater than 0·60, with higher MgO and lower FeO* compared with average Aleutian volcanic rocks at all silica contents. Common basalts and basaltic andesites in the series are primitive, with average Mg# values of 0·67 (±0·02, n = 99, 1SD), and have Sr concentrations (423 ± 29 ppm, n = 99) and La/Yb ratios (4·5 ± 0·4, n = 29) that are typical of island arc basaltic lavas. A smaller group of basaltic samples is more evolved and geochemically more enriched, with higher and more variable Sr and La/Yb (average Mg# = 0·61 ± 0·1, n = 31; Sr = 882 ± 333 ppm, n = 31; La/Yb = 9·1 ± 0·9, n = 16). None of the geochemically enriched basalts or basaltic andesites has low Y (〈15 ppm) or Yb (〈1·5 ppm), so none show the influence of residual or cumulate garnet. In contrast, most western seafloor andesites, dacites and rhyodacites have higher Sr (〉1000 ppm) and are adakitic, with strongly fractionated trace element patterns (Sr/Y = 50–350, La/Yb = 8–35, Dy/Yb = 2·0–3·5) with low relative abundances of Nb and Ta (La/Ta 〉 100), consistent with an enhanced role for residual or cumulate garnet + rutile. All western seafloor lavas have uniformly radiogenic Hf and Nd isotopes, with εNd = 9·1 ± 0·3 (n = 31) and εHf = 14·5 ± 0·6 (n = 27). Lead isotopes are variable and decrease with increasing SiO2 from basalts with 206Pb/204Pb = 18·51 ± 0·05 (n = 11) to dacites and rhyodacites with 206Pb/204Pb = 18·43 ± 0·04 (n = 18). Western seafloor lavas form a steep trend in 207Pb/204Pb–206Pb/204Pb space, and are collinear with lavas from emergent Aleutian volcanoes, which mostly have 206Pb/204Pb 〉 18·6 and 207Pb/204Pb 〉 15·52. High MgO and Mg# relative to silica, flat to decreasing abundances of incompatible elements, and decreasing Pb isotope ratios with increasing SiO2 rule out an origin for the dacites and rhyodacites by fractional crystallization. The physical setting of some samples (erupted through Bering Sea oceanic lithosphere) rules out an origin for their garnet + rutile trace element signature by melting in the deep crust. Adakitic trace element patterns in the dacites and rhyodacites are therefore interpreted as the product of melting of mid-ocean ridge basalt (MORB) eclogite in the subducting oceanic crust. Western seafloor andesites, dacites and rhyodacites define a geochemical end-member that is isotopically like MORB, with strongly fractionated Ta/Hf, Ta/Nd, Ce/Pb, Yb/Nd and Sr/Y. This eclogite component appears to be present in lavas throughout the arc. Mass-balance modeling indicates that it may contribute 36–50% of the light rare earth elements and 18% of the Hf that is present in Aleutian volcanic rocks. Close juxtaposition of high-Mg# basalt, andesite and dacite implies widely variable temperatures in the western Aleutian mantle wedge. A conceptual model explaining this shows interaction of hydrous eclogite melts with mantle peridotite to produce buoyant diapirs of pyroxenite and pyroxenite melt. These diapirs reach the base of the crust and feed surface volcanism in the western Aleutians, but are diluted by extensive melting in a hotter mantle wedge in the eastern part of the arc.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-12-19
    Description: Thin oceanic crust is formed by decompression melting of the upper mantle at mid-ocean ridges, but the origin of the thick and buoyant continental crust is enigmatic. Juvenile continental crust may form from magmas erupted above intraoceanic subduction zones, where oceanic lithosphere subducts beneath other oceanic lithosphere. However, it is unclear why the subduction of dominantly basaltic oceanic crust would result in the formation of andesitic continental crust at the surface. Here we use geochemical and geophysical data to reconstruct the evolution of the Central American land bridge, which formed above an intra-oceanic subduction system over the past 70Myr. We find that the geochemical signature of erupted lavas evolved from basaltic to andesitic about 10Myr ago - coincident with the onset of subduction of more oceanic crust that originally formed above the Galápagos mantle plume. We also find that seismic P-waves travel through the crust at velocities intermediate between those typically observed for oceanic and continental crust. We develop a continentality index to quantitatively correlate geochemical composition with the average P-wave velocity of arc crust globally. We conclude that although the formation and evolution of continents may involve many processes, melting enriched oceanic crust within a subduction zone - a process probably more common in the Archaean - can produce juvenile continental crust.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-10-26
    Description: The origin of the Christmas Island Seamount Province in the northeast Indian Ocean is enigmatic. The seamounts do not form the narrow, linear and continuous trail of volcanoes that would be expected if they had formed above a mantle plume1, 2. Volcanism above a fracture in the lithosphere3 is also unlikely, because the fractures trend orthogonally with respect to the east–west trend of the Christmas Island chain. Here we combine 40Ar/39Ar age, Sr, Nd, Hf and high-precision Pb isotope analyses of volcanic rocks from the province with plate tectonic reconstructions. We find that the seamounts are 47–136 million years old, decrease in age from east to west and are consistently 0–25 million years younger than the underlying oceanic crust, consistent with formation near a mid-ocean ridge. The seamounts also exhibit an enriched geochemical signal, indicating that recycled continental lithosphere was present in their source. Plate tectonic reconstructions show that the seamount province formed at the position where West Burma began separating from Australia and India, forming a new mid-ocean ridge. We propose that the seamounts formed through shallow recycling of delaminated continental lithosphere entrained in mantle that was passively upwelling beneath the mid-ocean ridge. We conclude that shallow recycling of continental lithosphere at mid-ocean ridges could be an important mechanism for the formation of seamount provinces in young ocean basins.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...