GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: MEDICAL / Biotechnology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (329 pages)
    Edition: 1st ed.
    ISBN: 9781351021616
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editors -- List of Contributors -- Chapter 1 Comprehensive Array of Ample Analytical Strategies for Characterization of Nanomaterials -- 1.1 Background -- 1.2 Overview of Physiochemical Characteristics of Nanomaterials -- 1.3 Size -- 1.3.1 Morphology -- 1.3.2 Surface Properties -- 1.3.3 Composition and Purity -- 1.3.4 Stability -- 1.4 Techniques for Physicochemical Characterization of NPs -- 1.4.1 Microscopic Techniques -- 1.4.1.1 Near-Field Scanning Optical Microscopy (NSOM) -- 1.4.1.2 Scanning Electron Microscopy (SEM) -- 1.4.1.3 Transmission Electron Microscopy (TEM) -- 1.4.1.4 Scanning Tunneling Microscopy (STM) -- 1.4.1.5 Atomic Force Microscopy (AFM) -- 1.4.2 Spectroscopic Techniques -- 1.4.2.1 Optical Spectroscopy -- 1.4.2.2 Ultraviolet-Visible (UV-Vis) Spectroscopy -- 1.4.2.3 Fluorescence Spectroscopy -- 1.4.2.4 Fluorescence Correlation Spectroscopy (FCS) -- 1.4.2.5 Confocal Correlation Spectroscopy (CCS) -- 1.4.2.6 Infrared (IR) Spectroscopy -- 1.4.2.7 Raman Scattering (RS) -- 1.4.2.8 Nuclear Magnetic Resonance (NMR) -- 1.4.2.9 Mass Spectrometry (MS) -- 1.4.2.10 Circular Dichroism (CD) -- 1.4.3 Miscellaneous Techniques -- 1.4.3.1 Dynamic Light Scattering (DLS) -- 1.4.3.2 Zeta Potential -- 1.4.3.3 X-Ray Diffraction (XRD) -- 1.4.3.4 Thermal Gravimetric Analysis (TGA) -- 1.4.3.5 Quartz Crystal Microbalance (QCM) -- 1.4.3.6 Differential Scanning Calorimetry (DSC) -- 1.4.3.7 Vibrating Sample Magnetometer (VSM) -- 1.4.3.8 Analytical Ultracentrifugation (AUG) -- 1.4.3.9 Brunauer-Emmett-Teller (BET) -- Conclusion -- References -- Chapter 2 Facile Chemical Fabrication of Designer Biofunctionalized Nanomaterials -- 2.1 Introduction -- 2.2 Synthesis of Nanoparticles -- 2.3 Methods of Surface Functionalization -- 2.4 Coupling Strategies -- 2.4.1 Covalent Coupling. , 2.4.1.1 Click-Chemistry Approach -- 2.4.2 Noncovalent Coupling -- 2.5 Affinity Interactions -- 2.5.1 Poly(ethylene glycol) -- 2.5.2 Bioconjugation Using Biomolecules -- 2.5.3 Biotin-Avidin -- 2.5.4 DNA/Nucleic Acids -- 2.5.5 Proteins and Peptides -- 2.5.6 Carbohydrates -- 2.5.7 Phospholipids -- Conclusion -- References -- Chapter 3 Functionalized Nanogold: Its Fabrication and Needs -- 3.1 Introduction -- 3.2 Fabrication of Functionalized Gold Nanostructures -- 3.2.1 Physical Techniques of Fabrication -- 3.2.2 Chemical Synthesis Methods for Functionalized Gold -- 3.2.2.1 Citrate Stabilized Gold Nanoparticles -- 3.2.2.2 Thiol-Protected Gold Nanostructures -- 3.2.2.3 Polymer-Stabilized Gold Nanostructures -- 3.2.2.4 Anisotropic Gold Nanostructures -- 3.2.3 Electrochemical and Photochemical Synthesis -- 3.3 Surface Plasmon Resonance Properties of Gold Nanostructures -- 3.4 Application of Gold Nanostructures -- 3.4.1 Chemical Sensing -- 3.4.2 Biosensing -- 3.4.3 Catalysis -- 3.4.3.1 Plasmonic Photocatalysis -- Conclusion -- References -- Chapter 4 Biogenic Synthesis of Silver Nanoparticles and Their Applications -- 4.1 Nanotechnology -- 4.2 Nanomaterials and Nanoparticles -- 4.3 Silver Nanoparticles -- 4.4 Publication Scenario on Silver Nanoparticles Synthesis -- 4.4.1 Physical Approaches -- 4.4.2 Chemical Approaches -- 4.4.3 Biological Synthesis of Silver Nanoparticles -- 4.5 Microbe-Assisted Synthesis of Silver Nanoparticles -- 4.6 Plant-Mediated Synthesis of Silver Nanoparticles -- 4.7 Fungal-Derived Silver Nanoparticles -- 4.8 Superiority of Biological Methods -- 4.9 Silver Nanoparticles from White-Rot Fungi -- 4.10 Silver Nanoparticles Synthesis -- 4.11 Biosynthesis of Nanoparticles by Fungi -- 4.12 Intracellular Synthesis of Nanoparticles by Fungi -- 4.13 Extracellular Synthesis of Nanoparticles by Fungi. , 4.14 Silver Nanoparticles from White-Rot Fungi -- 4.15 Applications of Silver Nanoparticles -- 4.16 Antimicrobial Activity -- 4.17 Anticandidal Activity -- 4.18 Application of Biogenic Silver Nanoparticles in Fabrics -- 4.19 Anticancer Activity -- 4.20 Nanotechnology in Wood Protection -- Conclusion -- References -- Chapter 5 Nanostructure Thin Films: Synthesis and Different Applications -- 5.1 Introduction -- 5.2 Atomic Layer Deposition of Thin Film -- 5.3 Chemical Bath Deposition of Thin Film -- 5.4 Electrodeposition of Thin Films -- 5.5 Spray Pyrolysis Deposition of Thin Film -- 5.6 Successive Ionic Layer Absorption and Reaction Deposition of Thin Film -- 5.7 RF Sputtering Deposition of Thin Films -- Conclusion -- Acknowledgments -- References -- Chapter 6 Carbon Nanotubes: Preparation and Surface Modification for Multifunctional Applications -- 6.1 Introduction -- 6.2 Preparation of Carbon Nanotubes -- 6.2.1 Arc Discharge -- 6.2.2 Laser Ablation (Also Called Laser Vaporization) -- 6.2.3 Chemical Vapor Deposition -- 6.3 Carbon Nanotube Modification -- 6.3.1 Covalent Modification -- 6.3.1.1 Sidewall and End-T Modification -- 6.3.1.2 Defect Modification -- 6.3.2 Non-Covalent Modification -- 6.3.2.1 Exohedral Modification -- 6.3.2.2 Endohedral Filling Modification -- 6.4 Application -- 6.4.1 Functional Nanocomposite Materials -- 6.4.2 Electronics -- 6.4.3 Biotechnological Applications -- Conclusion -- References -- Chapter 7 Carbon Dots: Scalable Synthesis, Physicochemical Properties, and Biomedical Application -- 7.1 Introduction -- 7.2 Characteristic Properties of Carbon Dots -- 7.3 Synthesis and Application of Carbon Dots -- 7.4 Future Prospects of Carbon Dots -- Conclusion -- References -- Chapter 8 Investigations on Exotic Forms of Carbon: Nanotubes, Graphene, Fullerene, and Quantum Dots -- 8.1 Introduction. , 8.2 Synthesis Methods of Different Carbon Nanomaterials -- 8.2.1 Fullerene -- 8.2.2 Carbon Nanotubes (CNTs) -- 8.2.2.1 Arc Discharge -- 8.2.2.2 Laser Ablation -- 8.2.2.3 Chemical Vapor Deposition -- 8.2.3 Preparation of Graphene -- 8.2.4 Synthesis of CQDs -- 8.3 Our Group's R and D Efforts towards Synthesis and Characterization of CNTs, Graphene, Fullerene, and Quantum Dots -- 8.3.1 Synthesis of CNTs and Fullerene -- 8.3.2 Synthesis of Graphene -- 8.3.3 Synthesis of CQDs -- 8.4 Conclusions -- Acknowledgments -- References -- Chapter 9 Nanodiamonds and Other Organic Nanoparticles: Synthesis and Surface Modifications -- 9.1 Introduction -- 9.2 Nanodiamonds -- 9.2.1 Structure of Nanodiamonds -- 9.2.2 Significant Properties of Nanodiamonds -- 9.2.2.1 Physical Properties -- 9.2.2.2 Chemical Properties -- 9.2.2.3 Biological Properties -- 9.2.3 Synthesis of Nanodiamonds -- 9.2.3.1 Detonation Synthesis -- 9.2.3.2 Laser-Based Synthesis -- 9.2.3.3 High-Pressure High-Temperature Synthesis -- 9.2.3.4 Ultrasonic Cavitation -- 9.2.3.5 Chemical Vapor Deposition -- 9.2.4 Purification of Nanodiamonds -- 9.2.5 Functionalized Nanodiamonds -- 9.3 Organic Nanoparticles -- 9.3.1 General Synthetic Approaches for the Fabrication of Organic Nanoparticles -- 9.3.1.1 Top-Down Approaches -- 9.3.1.2 Bottom-Up Approaches -- 9.3.2 Synthesis of Organic Nanoparticles -- 9.3.2.1 Micelles -- 9.3.2.2 Vesicles and Liposomes -- 9.3.2.3 Dendrimers -- 9.3.2.4 Polymeric Nanoparticles -- 9.3.2.5 Polymer-Based Nanostructures -- 9.3.2.6 Lipid-Based Nanoparticles -- Conclusion -- Acknowledgments -- References -- Chapter 10 Polymeric Nanoparticles: Preparation and Surface Modification -- 10.1 Introduction -- 10.2 Polymers -- 10.3 Polymer Properties -- 10.4 Nanoparticles -- 10.5 Strategies to Functionalize Nanoparticles -- 10.6 Characterizations of Polymeric Nanoparticles -- References. , Chapter 11 Cellulose Fibers and Nanocrystals: Preparation, Characterization, and Surface Modification -- 11.1 Introduction -- 11.2 Cellulose Fibers: Structure and Chemistry -- 11.3 Cellulose Sources -- 11.4 Cellulose Isolation Methods -- 11.4.1 Cellulose from Lignocellulosic Materials -- 11.4.2 Cellulose from Animals, Algae, and Bacteria -- 11.5 Overview of Cellulose Nanofibers -- 11.6 Cellulose Nanocrystals: Preparation Methods -- 11.7 Characterization and Properties of Cellulose Nanocrystals -- 11.7.1 Fourier Transform Infrared Spectroscopy (FTIR) -- 11.7.2 X-Ray Diffraction Analysis -- 11.7.3 Scanning Electron Microscopy (SEM) -- 11.7.4 Transmission Electron Microscopy (TEM) -- 11.7.5 Atomic Force Microscopy (AFM) -- 11.7.6 Thermogravimetric Analysis (TGA) -- 11.8 Surface Modification of Cellulose Nanocrystals -- 11.8.1 Covalent Modification -- 11.8.1.1 Esterification -- 11.8.1.2 Silylation -- 11.8.1.3 Etherification -- 11.8.2 Non-Covalent Modification -- 11.8.3 Mercerization -- Conclusion -- Acknowledgments -- References -- Chapter 12 Protein and Peptide Nanoparticles: Preparation and Surface Modification -- 12.1 Introduction -- 12.2 Parameters for the Preparation of Protein Nanoparticles -- 12.2.1 Protein Composition -- 12.2.2 Protein Solubility -- 12.2.3 Surface Properties -- 12.2.4 Properties of Drugs -- 12.3 Methods of Preparation -- 12.3.1 Desolvation -- 12.3.2 Crosslinking -- 12.3.3 Coacervation -- 12.3.4 Emulsification -- 12.3.5 Nanoprecipitation -- 12.3.6 Nanoparticles Auto Assembly -- 12.3.7 Coating Layer by Layer -- 12.3.8 Spray Drying -- 12.3.9 Electrospray -- 12.3.10 Salting Out -- 12.3.11 Albumin-Bound Nanoparticle Preparation -- Conclusion -- References -- Chapter 13 Recent Advances in Glycolipid Biosurfactants at a Glance: Biosynthesis, Fractionation, Purification, and Distinctive Applications -- 13.1 Introduction. , 13.2 Biosynthesis and Physiochemical Aspects of Glycolipid BS.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Sewage-Microbiology. ; Sewage-Purification-Biological treatment. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (371 pages)
    Edition: 1st ed.
    ISBN: 9781000775310
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Acknowledgments -- Editors -- Contributors -- Section I: Introduction to Wastewater and Remediation Technologies -- 1. Wastewater Pollution, Toxicity Profile, and Their Treatment Approaches: A Review -- 1.1 Introduction -- 1.2 The Unique Properties of Water Available Globally -- 1.2.1 Biological Properties and Clinical Benefits of Water -- 1.2.2 Physical Properties of Water -- 1.2.3 The Chemical Properties of Water -- 1.3 World's Water Resources and Their Distribution -- 1.4 Water Pollution -- 1.5 The Global Water Pollution -- 1.6 Water Pollution in India -- 1.7 Major Water Pollutants -- 1.8 An Understanding of Wastewater Treatment Methods -- 1.9 Waste Water Pollutants and Their Treatment Approaches with Nanotechnology and Nanomaterials -- 1.10 Role of Nanoparticles in Water Decontamination -- 1.11 Conclusion and Future Prospects -- Acknowledgement -- References -- 2. Bioremediation: A Sustainable Approach Towards Clean Environment -- 2.1 Introduction -- 2.2 Toxicity of the Pollutants to Living Beings and the Environment -- 2.3 Bioremediation -- 2.4 Approaches of Bioremediation -- 2.4.1 In-Situ Bioremediation -- 2.4.1.1 Biosparging -- 2.4.1.2 Bioslurping -- 2.4.1.3 Bioventing -- 2.4.1.4 Biostimulation -- 2.4.1.5 Bioaugmentation -- 2.4.1.6 Biopiling -- 2.4.2 Ex-Situ Bioremediation -- 2.4.2.1 Composting -- 2.4.2.2 Land Farming -- 2.4.2.3 Biopiles -- 2.5 Phytoremediation -- 2.5.1 Phytoextraction/Phytoaccumulation -- 2.5.2 Phytostabilization -- 2.5.2.1 Biochar -- 2.5.3 Phytodegradation/Phytotransformation -- 2.5.4 Phytovolatization -- 2.5.5 Phytofiltration/Rhizofiltration -- 2.5.6 Phytorestauration -- 2.5.6.1 Advantages of Using Phytoremediation -- 2.6 Microorganisms in Bioremediation -- 2.6.1 Biomining -- 2.6.2 Biooxidation. , 2.6.3 Enzyme Mediated Bioremediation -- 2.7 Bioreactor-Based Bioremediation -- 2.8 Role of Biosurfactants in Bioremediation -- 2.9 Application of Metagenomics in Bioremediation -- 2.10 Constraints in Bioremediation -- 2.11 Conclusion -- 2.12 Future Scope -- References -- 3. Constructed Wetland-Microbial Fuel Cell Technology During Wastewater Treatment: Progress, Challenges, and Opportunities -- 3.1 Introduction -- 3.2 Constructed Wetland and Microbial Fuel Cells' Operational Mechanism -- 3.3 Various Designs and Operations of Constructed Wetlands -- 3.4 Factors Affecting the Operational Mechanisms -- 3.4.1 Electrode Material and Separators -- 3.4.2 Anode Materials -- 3.4.3 Cathode Materials -- 3.4.4 Separator -- 3.4.5 Types of Substrates -- 3.4.6 Constructed Wetland Plants -- 3.5 Application of Constructed Wetland-Microbial Fuel Cells -- 3.6 Advancement in Constructed Wetlands by Integration of Microbial Fuel Cell -- 3.7 Challenges and Future Perspectives -- 3.8 Conclusion -- References -- 4. Genetically Engineered Microorganisms (GEMs) for a Sustainable Environment: A Promising Biotechnological Tool -- 4.1 Introduction -- 4.2 Microbial Bioremediation Is Influenced by a Variety of Factors -- 4.2.1 Biological Factors -- 4.2.1.1 Environmental Factors -- 4.3 Types of Bio-Remediation -- 4.3.1 Bio-Stimulation -- 4.3.2 Bioaugmentation -- 4.3.3 Biovent -- 4.3.4 Biopiles -- 4.4 Microbial Enzymes for Bioremediation -- 4.4.1 Cytochrome P450 -- 4.4.2 Laccase -- 4.4.3 Dehydrogenase -- 4.4.4 Hydrolase -- 4.5 Examples of Genetic Engineering of Microorganisms and Biodegradation -- 4.5.1 Branched-Chain Aromatics -- 4.5.1.1 Pseudomonas Putida Plasmid TOL Pathway -- 4.5.2 Chlorinated Compounds -- 4.5.2.1 Chlorobenzoate -- 4.5.2.2 Polychlorinated Biphenyls (PCBs) and Chlorinated Biphenyls -- 4.5.2.3 Trichlorethylene (TCE). , 4.6 Recombinant DNA (r DNA) Technology for Microorganisms in Bioremediation -- 4.7 Bioremediation Potential -- 4.8 Bioremediation Impact on Human and Environmental Health -- 4.9 Conclusion -- References -- 5. Performance of Anammox in Industrial Wastewater Treatment: Recent Advances and Future Prospects -- 5.1 Introduction of Anammox -- 5.2 Contribution of Anammox in the Wastewater Treatment Plants (WWTPs) -- 5.3 Industrial Wastewater Characteristic -- 5.3.1 Biological Nitrogen Removal Treatments in Industrial Wastewater -- 5.3.1.1 Conventional Nitrification-Denitrification Process -- 5.3.1.2 Nitritation-Denitritation Process -- 5.3.1.3 Partial Nitritation/Anammox (PN/A) Process -- 5.4 Anammox in Industrial Wastewater -- 5.5 Challenges -- 5.6 The Opportunity and Future Prospects -- 5.7 Conclusion -- Acknowledgements -- References -- 6. Vermifiltration Technology: Earthworm Assisted Green Technology for Wastewater Treatment -- 6.1 Introduction -- 6.2 Vermifiltration Technology -- 6.2.1 Earthworms: Earth's Trash Managers -- 6.2.2 Design of the Vermifilter -- 6.2.3 Types of Earthworms -- 6.2.4 Hydraulic Retention Time (HRT) and Hydraulic Loading Rate (HLR) -- 6.3 Mechanism of Vermifiltration Technology for Wastewater Treatment -- 6.4 Integration of Earthworms in Other Nature-Based Solutions -- 6.5 Case Studies -- 6.5.1 Integration of Constructed Wetlands with Vermifilter to Treat Feedlot Runoff Wastewater - A Case Study in the US -- 6.5.2 Integration of Vermifiltration and Hydroponic System for Swine Wastewater Treatment - A Case Study in Portugal (Ispolnov et al., 2021) -- 6.5.3 Indian Institute of Technology (IIT) Bhubaneshwar on Macrophyte Assisted Vermifilter for Dairy Wastewater (Samal et al., 2018) -- 6.5.4 Earthworms Help in Dealing with the Clogging Issue of HSFCWs - A Case Study of Australia. , 6.5.5 Potential Effects of Applying Earthworms Into Constructed Wetlands Ecosystem - A Case Study in Thailand -- 6.5.6 INNOQUA Project (2020) -- 6.6 Advantages of the Integration -- References -- 7. Amalgamation of Constructed Wetland and Microbial Fuel Cell Systems as a Sustainable Approach Towards Wastewater Treatment and Energy Recovery -- 7.1 Introduction -- 7.2 Constructed Wetland and Microbial Fuel Cell -- 7.2.1 Constructed Wetlands and Its Removal Mechanism -- 7.2.1.1 Removal Mechanism in CW -- 7.2.2 Microbial Fuel Cell and Its Removal Mechanism -- 7.2.3 Integration of CW-MFC -- 7.3 Design Considerations in Constructed Wetland and Microbial Fuel Cell -- 7.3.1 Vegetation in CWs -- 7.3.2 Substrate -- 7.3.3 Materials of Electrode -- 7.3.4 Impacts of Vegetation and Media on Electricity Production -- 7.4 Current Scenario and Advancement in CW-MFCs -- 7.4.1 Use of Integrated CW-MFC for Various Wastewater Treatment -- 7.4.2 Resource Recovery Options from Integrated CW-MFCs -- 7.4.3 Comparison of CW-MFC with Other Treatment Technologies -- 7.5 Future Scope and Challenges -- 7.6 Conclusion -- Abbreviation -- Acknowledgments -- References -- 8. Indigenous Microorganisms: An Effective In-Situ Tool to Mitigate Organic Pollutants from Contaminated Sites -- 8.1 Occurrence of Organic Contaminants -- 8.2 Conventional Techniques for Remediation -- 8.3 Indigenous Microorganisms for Remediation -- 8.4 Bioremediation Prospects: In-Situ and Ex-Situ -- 8.4.1 Bioattenuation: Natural Method of Degradation -- 8.4.2 Biostimulation: Input of Correct Nutrient Ratio -- 8.4.3 Bioaugmentation: When Locals Take Up the Task? -- 8.5 Advanced Technologies to Improve In-Situ Remediation -- 8.5.1 Genetically Modified Microbes (GEMs) -- 8.5.2 Biofilm/Bio-Surfactants Formation -- 8.5.2.1 Biofilm Formation -- 8.5.2.2 Biosurfactants Production -- 8.5.3 Nano-Bioremediation. , 8.5.4 Metagenomics Approach -- 8.6 Conclusion -- Acknowledgements -- References -- 9. Bioaugmentation of Petroleum Hydrocarbons and Polycyclic Aromatic Hydrocarbons: A Review -- 9.1 Introduction -- 9.2 Bioaugmentation -- 9.3 Biochemistry of Bioaugmentation Technique -- 9.3.1 Dehalogenation -- 9.3.2 Fragmentation -- 9.3.3 Mineralization -- 9.3.3.1 Aerobic Mode of Degradation -- 9.3.3.2 Anaerobic Mode of Degradation -- 9.4 Factors Affecting Bioaugmentation -- 9.4.1 Water Quality -- 9.4.2 Temperature -- 9.4.3 pH -- 9.4.4 Organic Matter -- 9.4.5 Redox Potential and Oxygen Content -- 9.4.6 Nutrients -- 9.4.7 Plant Root Exudates -- 9.5 Bioaugmentation of Total Petroleum Hydrocarbons (TPH) -- 9.5.1 Bioaugmentation of Polycyclic Aromatic Hydrocarbons (PAHs) -- 9.5.1.1 Bacterial Mechanisms of PAH Metabolism -- 9.5.1.2 Fungal Mechanisms of PAH Metabolism -- 9.6 Conclusion -- References -- 10. Microbial Biofilms for Efficient Biological Wastewater Treatment: Mechanisms, Challenges, Opportunities, and Future Perspectives -- 10.1 Introduction -- 10.2 Mechanism of Biofilm Formation -- 10.2.1 Extracellular Polymeric Substances (EPS) -- 10.2.2 Quorum Sensing in Biofilm Formation -- 10.2.3 Different Approaches for Studying Biofilm Development -- 10.3 Factors Influencing Biofilm Development -- 10.3.1 Abiotic Factors -- 10.3.2 Surface Topography -- 10.3.3 Velocity and Turbulence -- 10.3.4 Biotic Factors -- 10.4 Biofilm Technologies in Wastewater Treatment -- 10.4.1 Trickling Filters -- 10.4.2 Rotating Biological Contactor -- 10.4.3 Moving Bed Biofilm Reactor -- 10.4.4 Biofilm Airlift Suspension Reactors -- 10.4.5 Sequencing Batch Biofilm Reactor -- 10.4.6 Biofilm-Based Membrane Bioreactors -- 10.5 Nutrient Removal in Wastewater Treatment System by Biofilm Technologies -- 10.5.1 Nitrogen Removal -- 10.5.2 Phosphorous Removal. , 10.6 High Strength, Recalcitrant Wastewater Treatment Using Biofilm Technologies.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Food. ; Electronic books.
    Description / Table of Contents: Rapid industrialization and intensive increase in agricultural activities has decreased the soil quality, fertility, thereby adversely impacting environment, which is a serious concern globally. This book will be covering various roles of biological as well as physico-chemical management technologies for environment sustainability.
    Type of Medium: Online Resource
    Pages: 1 online resource (385 pages)
    Edition: 1st ed.
    ISBN: 9781000735956
    DDC: 363.705
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...