GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 118 (2013): 5322–5332, doi:10.1002/jgrc.20379.
    Description: By analyzing global data, we find that over large scales, surfaces of constant nitrate are often better aligned with isopycnals than with isobars, particularly below the euphotic zone. This is unexplained by the movement of isopycnal surfaces in response to eddies and internal waves, and is perhaps surprising given that the biological processes that alter nitrate distributions are largely depth dependent. We provide a theoretical framework for understanding the orientation of isonitrate surfaces in relation to isopycnals. In our model, the nitrate distribution results from the balance between depth-dependent biological processes (nitrate uptake and remineralization), and the along-isopycnal homogenization of properties by eddy fluxes (parameterized by eddy diffusivity). Where the along-isopycnal eddy diffusivity is relatively large, nitrate surfaces are better aligned with isopycnals than isobars. We test our theory by estimating the strength of the eddy diffusivity and biological export production from global satellite data sets and comparing their contributions. Indeed, we find that below the euphotic zone, the mean isonitrate surfaces are oriented along isopycnals where the isopycnal eddy diffusivity is large, and deviate where the biological export of organic matter is relatively strong. Comparison of nitrate data from profiling floats in different regions corroborates the hypothesis by showing variations in the nitrate-density relationship from one part of the ocean to another.
    Description: We acknowledge the support of the National Science Foundation (Grant OCE-0928617) and NASA (Grant NNX- 08AL80G).
    Description: 2014-04-15
    Keywords: Nitrate ; Export ; Mixing ; Isopycnal ; Alignment ; Large-scale
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 8495–8511, doi:10.1002/2014JC010211.
    Description: Oceanic frontal instabilities are of importance for the vertical exchange of properties in the ocean. Submesoscale, O(1) Rossby number, dynamics are particularly relevant for inducing the vertical (and lateral) flux of buoyancy and tracers in the mixed layer, but how these couple with the stratified pycnocline is less clear. Observations show surface fronts often persist beneath the mixed layer. Here we use idealized, three-dimensional model simulations to show how surface fronts that extend deeper into the pycnocline invoke enhanced vertical fluxes through the coupling of submesoscale and mesoscale instabilities. We contrast simulations in which the front is restricted to the mixed layer with those in which it extends deeper. For the deeper fronts, we examine the effect of density stratification on the vertical coupling. Our results show deep fronts can dynamically couple the mixed layer and pycnocline on time scales that increase with the peak stratification beneath the mixed layer. Eddies in the interior generate skew fluxes of buoyancy and tracer oriented along isopycnals, thus providing an adiabatic pathway for the interior to interact with the mixed layer at fronts. The vertical enhancement of tracer fluxes through the mesoscale-submesoscale coupling described here is thus relevant to the vertical supply of nutrients for phytoplankton in the ocean. A further implication for wind-forced fronts is that the vertical structure of the stream function characterizing the exchange between the interior and the mixed layer exhibits significant qualitative differences compared to a linear combination of existing parameterizations of submesoscale eddies in the mixed layer and mesoscale eddies in the interior. The discrepancies are most severe within the mixed layer suggesting a potential role for Ekman-layer dynamics absent in existing submesoscale parameterizations.
    Description: S.R. and A.T. acknowledge financial support from the National Science Foundation (NSF OCE-0928138) and the Office of Naval Research (ONR N00014-09-1-0196, ONR N00014-12-1-0101). A.M. acknowledges funding from the National Science Foundation (NSF OCE-0928617) and the Office of Naval Research (ONR N00014-12-1-0101).
    Description: 2015-06-11
    Keywords: Submesoscale ; Mixed layer ; Meso-submeso coupling ; Deep fronts
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of [publisher] for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 6531-6548, doi:10.1029/2017JC013639.
    Description: We consider two factors that affect the mixed layer depth (MLD) and potentially contribute to phytoplankton sustenance over winter—variability of air‐sea fluxes and three‐dimensional processes arising from horizontal density gradients (fronts). The role of these two factors is addressed using several three‐dimensional idealized numerical simulations in a process study ocean model forced with air‐sea fluxes at different temporal averaging frequencies. Results show that in winter, when the average mixed layer is much deeper than the euphotic layer and the period of daylight is short, phytoplankton production is relatively insensitive to high‐frequency variability in air‐sea fluxes. Short‐lived stratification events during light‐limited conditions have very little impact on phytoplankton production. On the other hand, the slumping of fronts shallows the mixed layer in a patchy manner and the associated restratification persists considerably longer than that caused by changes in air‐sea fluxes. Simulations with fronts show that in winter, the average MLD is about 600 m shallower than simulations without fronts. Prior to spring warming, the depth‐integrated phytoplankton concentration in the model with fronts is about twice as large as the case without fronts. Hence, even in winter, restratification by fronts is important for setting the MLD; it increases the residence time of phytoplankton in the euphotic layer and contributes to phytoplankton growth, thereby sustaining phytoplankton populations in winter. Higher model resolution intensifies submesoscale dynamics, leading to stronger restratification, shallower mixed layers, greater variability in the MLD, and more production of phytoplankton.
    Description: National Science Foundation Grant Numbers: OCE-1434512, OCE-1434788
    Description: 2019-03-14
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 43 (2016): 5160–5169, doi:10.1002/2016GL068051.
    Description: The spring phytoplankton bloom in the subpolar North Atlantic and the mechanisms controlling its evolution and onset have important consequences for marine ecosystems and carbon cycling. Submesoscale mixed layer eddies (MLEs) play a role in the onset of the bloom by creating localized stratification and alleviating phytoplankton light limitation; however, the importance of MLEs for phytoplankton in a turbulent surface mixed layer has not yet been examined. We explore the effect of MLEs on phytoplankton by simulating their trajectories with Lagrangian particles subject to turbulent vertical displacements in an MLE-resolving model. By tracking the light exposure of the simulated phytoplankton, we find that MLEs can advance the timing of the spring bloom by 1 to 2 weeks, depending on surface forcing conditions. The onset of the bloom is linked with the onset of positive heat fluxes, whether or not MLEs are present.
    Description: NASA Earth and Space Science Fellowship; NASA Grant Number: 343-0325; NSF Grant Number: OCE-1434788
    Description: 2016-11-18
    Keywords: Mixed layer eddies ; Phytoplankton blooms ; Lagrangian modeling ; Heat fluxes ; Localized stratification
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Omand, M. M., Govindarajan, R., He, J., & Mahadevan, A. Sinking flux of particulate organic matter in the oceans: Sensitivity to particle characteristics. Scientific Reports, 10(1), (2020): 5582, doi:10.1038/s41598-020-60424-5.
    Description: The sinking of organic particles produced in the upper sunlit layers of the ocean forms an important limb of the oceanic biological pump, which impacts the sequestration of carbon and resupply of nutrients in the mesopelagic ocean. Particles raining out from the upper ocean undergo remineralization by bacteria colonized on their surface and interior, leading to an attenuation in the sinking flux of organic matter with depth. Here, we formulate a mechanistic model for the depth-dependent, sinking, particulate mass flux constituted by a range of sinking, remineralizing particles. Like previous studies, we find that the model does not achieve the characteristic ‘Martin curve’ flux profile with a single type of particle, but instead requires a distribution of particle sizes and/or properties. We consider various functional forms of remineralization appropriate for solid/compact particles, and aggregates with an anoxic or oxic interior. We explore the sensitivity of the shape of the flux vs. depth profile to the choice of remineralization function, relative particle density, particle size distribution, and water column density stratification, and find that neither a power-law nor exponential function provides a definitively superior fit to the modeled profiles. The profiles are also sensitive to the time history of the particle source. Varying surface particle size distribution (via the slope of the particle number spectrum) over 3 days to represent a transient phytoplankton bloom results in transient subsurface maxima or pulses in the sinking mass flux. This work contributes to a growing body of mechanistic export flux models that offer scope to incorporate underlying dynamical and biological processes into global carbon cycle models.
    Description: We thank NSF (OCE 1260080), NASA (NNX16AR48G), and the Ministry of Earth Sciences, Government of India (Monsoon Mission Project on the Bay of Bengal) for support. This work was largely done in 2012 while MMO was a postdoctoral associate at WHOI, during a visit by RG supported by The Mary Sears visiting scholar program to the Woods Hole Oceanographic Institution. Thanks also to Benjamin Hodges for many thoughtful contributions.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 2960–2975, doi:10.1002/2016JC012494.
    Description: Traditionally, the mechanism driving the seasonal restratification of the Southern Ocean mixed layer (ML) is thought to be the onset of springtime warming. Recent developments in numerical modeling and North Atlantic observations have shown that submesoscale ML eddies (MLE) can drive a restratifying flux to shoal the deep winter ML prior to solar heating at high latitudes. The impact of submesoscale processes on the intraseasonal variability of the Subantarctic ML is still relatively unknown. We compare 5 months of glider data in the Subantarctic Zone to simulations of a 1-D mixing model to show that the magnitude of restratification of the ML cannot be explained by heat, freshwater, and momentum fluxes alone. During early spring, we estimate that periodic increases in the vertical buoyancy flux by MLEs caused small increases in stratification, despite predominantly down-front winds that promote the destruction of stratification. The timing of seasonal restratification was consistent between 1-D model estimates and the observations. However, during up-front winds, the strength of springtime stratification increased over twofold compared to the 1-D model, with a rapid shoaling of the MLD from 〉200 m to 〈100 m within a few days. The ML stratification is further modified under a negative Ekman buoyancy flux during down-front winds, resulting in the destruction of ML stratification and deepening of the MLD. These results propose the importance of submesoscale buoyancy fluxes enhancing seasonal restratification and mixing of the Subantarctic ML.
    Description: South African NRF-SANAP Grant Number: SNA14071475720; NSF Grant Number: OCE-I434788
    Description: 2017-10-08
    Keywords: Ocean gliders ; Southern Ocean ; Seasonal stratification ; 1-D mixed-layer model ; Mixed layer eddies ; Ekman buoyancy flux
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...