GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (2)
  • JOHN WILEY & SONS LTD  (1)
  • 1
    Publication Date: 2020-02-06
    Description: Trade-wind cumuli constitute the cloud type with the highest frequency of occurrence on Earth, and it has been shown that their sensitivity to changing environmental conditions will critically influence the magnitude and pace of future global warming. Research over the last decade has pointed out the importance of the interplay between clouds, convection and circulation in controling this sensitivity. Numerical models represent this interplay in diverse ways, which translates into different responses of trade-cumuli to climate perturbations. Climate models predict that the area covered by shallow cumuli at cloud base is very sensitive to changes in environmental conditions, while process models suggest the opposite. To understand and resolve this contradiction, we propose to organize a field campaign aimed at quantifying the physical properties of trade-cumuli (e.g., cloud fraction and water content) as a function of the large-scale environment. Beyond a better understanding of clouds-circulation coupling processes, the campaign will provide a reference data set that may be used as a benchmark for advancing the modelling and the satellite remote sensing of clouds and circulation. It will also be an opportunity for complementary investigations such as evaluating model convective parameterizations or studying the role of ocean mesoscale eddies in air–sea interactions and convective organization
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    JOHN WILEY & SONS LTD
    In:  EPIC3Quarterly Journal of the Royal Meteorological Society, JOHN WILEY & SONS LTD, 145(725), pp. 3846-3862, ISSN: 0035-9009
    Publication Date: 2020-05-15
    Description: Recent studies have suggested that Arctic teleconnections affect the weather of the midlatitudes on time‐scales relevant for medium‐range weather forecasting. In this study, we use several numerical experimentation approaches with a state‐of‐the‐art global operational numerical weather prediction system to investigate this idea further. Focusing on boreal winter, we investigate whether the influence of the Arctic on midlatitude weather, and the impact of the current Arctic observing system on the skill of medium‐range weather forecasts in the midlatitudes is more pronounced in certain flow regimes. Using so‐called Observing System Experiments, we demonstrate that removing in situ or satellite observations from the data assimilation system, used to create the initial conditions for the forecasts, deteriorates midlatitude synoptic forecast skill in the medium‐range, particularly over northern Asia. This deterioration is largest during Scandinavian Blocking episodes, during which: (a) error growth is enhanced in the European‐Arctic, as a result of increased baroclinicity in the region, and (b) high‐amplitude planetary waves allow errors to propagate from the Arctic into midlatitudes. The important role played by Scandinavian Blocking, in modulating the influence of the Arctic on midlatitudes, is also corroborated in relaxation experiments, and through a diagnostic analysis of the ERA5 reanalysis and reforecasts.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Surveys in Geophysics 38 (2017): 1529–1568, doi:10.1007/s10712-017-9428-0.
    Description: Trade-wind cumuli constitute the cloud type with the highest frequency of occurrence on Earth, and it has been shown that their sensitivity to changing environmental conditions will critically influence the magnitude and pace of future global warming. Research over the last decade has pointed out the importance of the interplay between clouds, convection and circulation in controling this sensitivity. Numerical models represent this interplay in diverse ways, which translates into different responses of trade-cumuli to climate perturbations. Climate models predict that the area covered by shallow cumuli at cloud base is very sensitive to changes in environmental conditions, while process models suggest the opposite. To understand and resolve this contradiction, we propose to organize a field campaign aimed at quantifying the physical properties of trade-cumuli (e.g., cloud fraction and water content) as a function of the large-scale environment. Beyond a better understanding of clouds-circulation coupling processes, the campaign will provide a reference data set that may be used as a benchmark for advancing the modelling and the satellite remote sensing of clouds and circulation. It will also be an opportunity for complementary investigations such as evaluating model convective parameterizations or studying the role of ocean mesoscale eddies in air–sea interactions and convective organization.
    Description: The EUREC4A project is supported by the European Research Council (ERC), under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 694768), by the Max Planck Society and by DFG (Deutsche Forschungsgemeinschaft, German Research Foundation) Priority Program SPP 1294.
    Keywords: Trade-wind cumulus ; Shallow convection ; Cloud feedback ; Atmospheric circulation ; Field campaign
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...