GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-03-09
    Description: In the early 1980s, Germany started a new era of modern Antarctic research. The Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) was founded and important research platforms such as the German permanent station in Antarctica, today called Neumayer III, and the research icebreaker Polarstern were installed. The research primarily focused on the Atlantic sector of the Southern Ocean. In parallel, the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) started a priority program ‘Antarctic Research’ (since 2003 called SPP-1158) to foster and intensify the cooperation between scientists from different German universities and the AWI as well as other institutes involved in polar research. Here, we review the main findings in meteorology and oceanography of the last decade, funded by the priority program. The paper presents field observations and modelling efforts, extending from the stratosphere to the deep ocean. The research spans a large range of temporal and spatial scales, including the interaction of both climate components. In particular, radiative processes, the interaction of the changing ozone layer with large-scale atmospheric circulations, and changes in the sea ice cover are discussed. Climate and weather forecast models provide an insight into the water cycle and the climate change signals associated with synoptic cyclones. Investigations of the atmospheric boundary layer focus on the interaction between atmosphere, sea ice and ocean in the vicinity of polynyas and leads. The chapters dedicated to polar oceanography review the interaction between the ocean and ice shelves with regard to the freshwater input and discuss the changes in water mass characteristics, ventilation and formation rates, crucial for the deepest limb of the global, climate-relevant meridional overturning circulation. They also highlight the associated storage of anthropogenic carbon as well as the cycling of carbon, nutrients and trace metals in the ocean with special emphasis on the Weddell Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    International Glaciological Society
    In:  EPIC3International Symposium on Contribution of Glaciers and Ice Sheets to Sea Level Change, Chamonix, France, 2014-05-26-2014-05-30International Glaciological Society
    Publication Date: 2014-07-04
    Description: Simulations of ice-shelf basal melting in future climate scenarios from the IPCC’s Fourth Assessment Report (AR4) have revealed a large uncertainty and the potential of a rapidly increasing basal mass loss particularly for the large cold-water ice shelves in the Ross and Weddell Seas. The large spread in model results was traced back to uncertainties in the freshwater budget on the continental shelf, which is governed by sea-ice formation. Differences in sea-ice formation, in turn, follow the regional differences between the atmospheric heat fluxes imprinted by the climate models. A more recent suite of BRIOS and FESOM model experiments was performed with output from two members of the newer generation of climate models engaged in the IPCC’s Fifth Assessment Report (AR5). Comparing simulations forced with output from the AR5/CMIP5 models HadGem2 and MPI-ESM, we find that uncertainties arising from inter-model differences in high latitudes have reduced considerably. Projected heat fluxes and thus sea-ice formation over the Southern Ocean continental shelves have converged to an ensemble with a much smaller spread than between the AR4 experiments. For most of the ten larger ice shelves in Antarctica, a gradual (but accelerating) increase of basal melt rates during the 21st century is a robust feature throughout the various realizations. Both with HadGem2 and with MPI-ESM forcing, basal melt rates for the Filchner–Ronne Ice Shelf in FESOM increase by a factor of two by the end of the 21st century in the RCP85 scenario. For the smaller, warm-water ice shelves, inter-model differences in ice-shelf basal mass loss projections are still slightly larger than differences between the scenarios RCP45 and RCP85; compared with AR4 projections, however, the model-dependent spread has been strongly reduced.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    International Glaciological Society
    In:  EPIC3IGS-International Symposium on "Interactions of Ice Sheets and Glaciers with the Ocean", La Jolla, CA, USA, 2011-06-05-2011-06-10Proceedings of Glaciology 59, International Glaciological Society
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-31
    Description: Despite global warming and Arctic sea-ice loss, on average the Antarctic sea-ice extent has not declined since 1979 when satellite data became available. In contrast, climate model simulations tend to exhibit strong negative sea-ice trends for the same period. This Antarctic sea-ice paradox leads to low confidence in 21st-century sea-ice projections. Here we present multi-resolution climate change projections that account for Southern Ocean mesoscale eddies. The high-resolution configuration simulates stable September Antarctic sea-ice extent that is not projected to decline until the mid-21st century. We argue that one reason for this finding is a more realistic ocean circulation that increases the equatorward heat transport response to global warming. As a result, the ocean becomes more efficient at moderating the anthropogenic warming around Antarctica and hence at delaying sea-ice decline. Our study suggests that explicitly simulating Southern Ocean eddies is necessary for providing Antarctic sea-ice projections with higher confidence.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...