GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nature Publishing Group  (2)
  • Hoboken, USA  (1)
  • 1
    Publication Date: 2023-01-27
    Description: Dissolved organic matter (DOM) is the largest organic carbon reservoir in the ocean and an integral component of biogeochemical cycles. The role of free‐living microbes in DOM transformation has been studied thoroughly, whereas little attention has been directed towards the influence of benthic organisms. Sponges are efficient filter feeders and common inhabitants of many benthic communities circumglobally. Here, we investigated how two tropical coral reef sponges shape marine DOM. We compared bacterial abundance, inorganic and organic nutrients in off reef, sponge inhalant, and sponge exhalant water of Melophlus sarasinorum and Rhabdastrella globostellata. DOM and bacterial cells were taken up, and dissolved inorganic nitrogen was released by the two Indo‐Pacific sponges. Both sponge species utilized a common set of 142 of a total of 3040 compounds detected in DOM on a molecular formula level via ultrahigh‐resolution mass spectrometry. In addition, species‐specific uptake was observed, likely due to differences in their associated microbial communities. Overall, the sponges removed presumably semi‐labile and semi‐refractory compounds from the water column, thereby competing with pelagic bacteria. Within minutes, sponge holobionts altered the molecular composition of surface water DOM (inhalant) into a composition similar to deep‐sea DOM (exhalent). The apparent radiocarbon age of DOM increased consistently from off reef and inhalant to exhalant by about 900 14C years for M. sarasinorum. In the pelagic, similar transformations require decades to centuries. Our results stress the dependence of DOM lability definition on the respective environment and illustrate that sponges are hotspots of DOM transformation in the ocean.
    Description: Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg
    Description: Ministry for Science and Culture of Lower Saxony http://dx.doi.org/10.13039/501100010570
    Description: Carl‐von‐Ossietzky University Oldenburg
    Description: Alfred‐Wegener‐Institute, Helmholtz‐Center for Polar and Marine Research
    Description: Volkswagen Foundation http://dx.doi.org/10.13039/501100001663
    Description: https://doi.org/10.5061/dryad.m0cfxpp6v
    Keywords: ddc:577.7 ; Indo-Pacific sponges ; dissolved organic matter ; biogeochemical cycles
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-05-25
    Description: Marine sponges are well known for their associations with highly diverse, yet very specific and often highly similar microbiota. The aim of this study was to identify potential bacterial sub-populations in relation to sponge phylogeny and sampling sites and to define the core bacterial community. 16S ribosomal RNA gene amplicon pyrosequencing was applied to 32 sponge species from eight locations around the world's oceans, thereby generating 2567 operational taxonomic units (OTUs at the 97% sequence similarity level) in total and up to 364 different OTUs per sponge species. The taxonomic richness detected in this study comprised 25 bacterial phyla with Proteobacteria, Chloroflexi and Poribacteria being most diverse in sponges. Among these phyla were nine candidate phyla, six of them found for the first time in sponges. Similarity comparison of bacterial communities revealed no correlation with host phylogeny but a tropical sub-population in that tropical sponges have more similar bacterial communities to each other than to subtropical sponges. A minimal core bacterial community consisting of very few OTUs (97%, 95% and 90%) was found. These microbes have a global distribution and are probably acquired via environmental transmission. In contrast, a large species-specific bacterial community was detected, which is represented by OTUs present in only a single sponge species. The species-specific bacterial community is probably mainly vertically transmitted. It is proposed that different sponges contain different bacterial species, however, these bacteria are still closely related to each other explaining the observed similarity of bacterial communities in sponges in this and previous studies. This global analysis represents the most comprehensive study of bacterial symbionts in sponges to date and provides novel insights into the complex structure of these unique associations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  EPIC3Scientific Reports, Nature Publishing Group, 7(2542), ISSN: 2045-2322
    Publication Date: 2019-03-07
    Description: Sponges (Porifera) are abundant and diverse members of benthic filter feeding communities in most marine ecosystems, from the deep sea to tropical reefs. A characteristic feature is the associated dense and diverse prokaryotic community present within the sponge mesohyl. Previous molecular genetic studies revealed the importance of host identity for the community composition of the sponge-associated microbiota. However, little is known whether sponge host-specific prokaryotic community patterns observed at 97% 16S rRNA gene sequence similarity are consistent at high taxonomic ranks (from genus to phylum level). In the present study, we investigated the prokaryotic community structure and variation of 24 sponge specimens (seven taxa) and three seawater samples from Sweden. Results show that the resemblance of prokaryotic communities at different taxonomic ranks is consistent with patterns present at 97% operational taxonomic unit level.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...