GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Geological Society of America (GSA)  (2)
  • Nature Research  (1)
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mayfield, K. K., Eisenhauer, A., Santiago Ramos, D. P., Higgins, J. A., Horner, T. J., Auro, M., Magna, T., Moosdorf, N., Charette, M. A., Gonneea, M. E., Brady, C. E., Komar, N., Peucker-Ehrenbrink, B., & Paytan, A. Groundwater discharge impacts marine isotope budgets of Li, Mg, Ca, Sr, and Ba. Nature Communications, 12(1), (2021): 148-020-20248-3, doi:10.1038/s41467-020-20248-3.
    Description: Groundwater-derived solute fluxes to the ocean have long been assumed static and subordinate to riverine fluxes, if not neglected entirely, in marine isotope budgets. Here we present concentration and isotope data for Li, Mg, Ca, Sr, and Ba in coastal groundwaters to constrain the importance of groundwater discharge in mediating the magnitude and isotopic composition of terrestrially derived solute fluxes to the ocean. Data were extrapolated globally using three independent volumetric estimates of groundwater discharge to coastal waters, from which we estimate that groundwater-derived solute fluxes represent, at a minimum, 5% of riverine fluxes for Li, Mg, Ca, Sr, and Ba. The isotopic compositions of the groundwater-derived Mg, Ca, and Sr fluxes are distinct from global riverine averages, while Li and Ba fluxes are isotopically indistinguishable from rivers. These differences reflect a strong dependence on coastal lithology that should be considered a priority for parameterization in Earth-system models.
    Description: We thank A. Beck, H. Dulai, I. Santos, C. Benitez-Nelson, W. Moore, A. Martin, and H. Windom for sample access. We also thank A. Kolevica, A. Heuser, H. Pryer, J. Middleton, R. Franks, F. Lon, N. Slater, and O. Šebek for their laboratory and analytical assistance. This material is based upon research supported by the National Science Foundation Graduate Research Fellowship Program and an internship provided through the U.S. Geological Survey Graduate Research Internship Program (GRIP). This research was also supported by grants from: the German Academic Exchange Service (DAAD), Northern California chapter of the Achievement Rewards for College Scientists Foundation, International Association of GeoChemistry, Geological Society of America, Northern California Geological Society, Myers Trust, Friends of Long Marine Lab, and UC MEXUS (to K.K.M.). We acknowledge funding from EU-ITN Horizon project 643084 (to A.E. and T.M.) and NSF grant Award Number 1259440 (to A.P.). We also acknowledge funding from NSF grant award number OCE-1736949 (to T.J.H.). Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-07-01
    Description: During the Eocene-Oligocene transition (EOT, ca. 34 Ma), Earth's climate cooled significantly from a greenhouse to an icehouse climate, while the calcite (CaCO3) compensation depth (CCD) in the Pacific Ocean increased rapidly. Fluctuations in the CCD could result from various processes that create an imbalance between calcium (Ca) sources to, and sinks from, the ocean (e.g., weathering and CaCO3 deposition), with different effects on the isotopic composition of dissolved Ca in the oceans due to differences in the Ca isotopic composition of various inputs and outputs. We used Ca isotope ratios ({delta}44/40Ca) of coeval pelagic marine barite and bulk carbonate to evaluate changes in the marine Ca cycle across the EOT. We show that the permanent deepening of the CCD was not accompanied by a pronounced change in seawater {delta}44/40Ca, whereas time intervals in the Neogene with smaller carbonate depositional changes are characterized by seawater {delta}44/40Ca shifts. This suggests that the response of seawater {delta}44/40Ca to changes in weathering fluxes and to imbalances in the oceanic alkalinity budget depends on the chemical composition of seawater. A minor and transient fluctuation in the Ca isotope ratio of bulk carbonate may reflect a change in isotopic fractionation associated with CaCO3 precipitation from seawater due to a combination of factors, including changes in temperature and/or in the assemblages of calcifying organisms.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-06-01
    Description: We report here the discovery of Miocene, Pliocene, and early Pleistocene shallow-marine carbonates on Mayaguana Island (southeastern Bahamas) that have so far not been observed on any other Bahamian island. Spanning more than 17 m.y., but
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...