GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 119 (11). pp. 7772-7793.
    Publication Date: 2019-09-23
    Description: The southwestern part of the subpolar North Atlantic east of the Grand Banks of Newfoundland and Flemish Cap is a crucial area for the Atlantic Meridional Overturning Circulation. Here the exchange between subpolar and subtropical gyre takes place, southward flowing cold and fresh water is replaced by northward flowing warm and salty water within the North Atlantic Current (NAC). As part of a long-term experiment, the circulation east of Flemish Cap has been studied by seven repeat hydrographic sections along 47 degrees N (2003-2011), a 2 year time series of current velocities at the continental slope (2009-2011), 19 years of sea surface height, and 47 years of output from an eddy resolving ocean circulation model. The structure of the flow field in the measurements and the model shows a deep reaching NAC with adjacent recirculation and two distinct cores of southward flow in the Deep Western Boundary Current (DWBC): one core above the continental slope with maximum velocities at mid-depth and the second farther east with bottom-intensified velocities. The western core of the DWBC is rather stable, while the offshore core shows high temporal variability that in the model is correlated with the NAC strength. About 30 Sv of deep water flow southward below a density of sigma=27.68 kg m(-3) in the DWBC. The NAC transports about 110 Sv northward, approximately 15 Sv originating from the DWBC, and 75 Sv recirculating locally east of the NAC, leaving 20 Sv to be supplied by the NAC from the south.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: The North Atlantic Current (NAC) is subject to variability on multiannual to decadal time scales, influencing the transport of volume, heat, and freshwater from the subtropical to the eastern subpolar North Atlantic (NA). Current observational time series are either too short or too episodic to study the processes involved. Here we compare the observed continuous NAC transport time series at the western flank of the Mid-Atlantic Ridge (MAR) and repeat hydrographic measurements at the OVIDE line in the eastern Atlantic with the NAC transport and circulation in the high-resolution (1/20°) ocean model configuration VIKING20 (1960–2008). The modeled baroclinic NAC transport relative to 3400 m (24.5 ± 7.1 Sv) at the MAR is only slightly lower than the observed baroclinic mean of 27.4 ± 4.7 Sv from 1993 to 2008, and extends further north by about 0.5°. In the eastern Atlantic, the western NAC (WNAC) carries the bulk of the transport in the model, while transport estimates based on hydrographic measurements from five repeated sections point to a preference for the eastern NAC (ENAC). The model is able to simulate the main features of the subpolar NA, providing confidence to use the model output to analyze the influence of the North Atlantic Oscillation (NAO). Model based velocity composites reveal an enhanced NAC transport across the MAR of up to 6.7 Sv during positive NAO phases. Most of that signal (5.4 Sv) is added to the ENAC transport, while the transport of the WNAC was independent of the NAO.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-09-27
    Description: A climatically-induced acceleration in ocean-driven melting of Antarctic ice shelves would have consequences for both the discharge of continental ice into the ocean and thus global sea level, and for the formation of Antarctic Bottom Water and the oceanic meridional overturning circulation. Using a novel gas-tight in-situ water sampler, noble gas samples have been collected from six locations beneath the Filchner Ice Shelf, the first such samples from beneath an Antarctic Ice shelf. Helium and neon are uniquely suited as tracers of glacial meltwater in the ocean. Basal meltwater fractions range from 3.6% near the ice shelf base to 0.5% near the sea floor, with distinct regional differences. We estimate an average basal melt rate for the Filchner-Ronne Ice Shelf of 177 ± 95 Gt/year, independently confirming previous results. We calculate that up to 2.7% of the meltwater has been refrozen, and we identify a local source of crustal helium.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in [citation], doi:[doi]. Frajka-Williams, E., Ansorge, I. J., Baehr, J., Bryden, H. L., Chidichimo, M. P., Cunningham, S. A., Danabasoglu, G., Dong, S., Donohue, K. A., Elipot, S., Heimbach, P., Holliday, N. P., Hummels, R., Jackson, L. C., Karstensen, J., Lankhorst, M., Le Bras, I. A., Lozier, M. S., McDonagh, E. L., Meinen, C. S., Mercier, H., Moat, B., I., Perez, R. C., Piecuch, C. G., Rhein, M., Srokosz, M. A., Trenberth, K. E., Bacon, S., Forget, G., Goni, G., Kieke, D., Koelling, J., Lamont, T., McCarthy, G. D., Mertens, C., Send, U., Smeed, D. A., Speich, S., van den Berg, M., Volkov, D., & Wilson, C. Atlantic meridional overturning circulation: Observed transport and variability. Frontiers in Marine Science, 6, (2019): 260, doi:10.3389/fmars.2019.00260.
    Description: The Atlantic Meridional Overturning Circulation (AMOC) extends from the Southern Ocean to the northern North Atlantic, transporting heat northwards throughout the South and North Atlantic, and sinking carbon and nutrients into the deep ocean. Climate models indicate that changes to the AMOC both herald and drive climate shifts. Intensive trans-basin AMOC observational systems have been put in place to continuously monitor meridional volume transport variability, and in some cases, heat, freshwater and carbon transport. These observational programs have been used to diagnose the magnitude and origins of transport variability, and to investigate impacts of variability on essential climate variables such as sea surface temperature, ocean heat content and coastal sea level. AMOC observing approaches vary between the different systems, ranging from trans-basin arrays (OSNAP, RAPID 26°N, 11°S, SAMBA 34.5°S) to arrays concentrating on western boundaries (e.g., RAPID WAVE, MOVE 16°N). In this paper, we outline the different approaches (aims, strengths and limitations) and summarize the key results to date. We also discuss alternate approaches for capturing AMOC variability including direct estimates (e.g., using sea level, bottom pressure, and hydrography from autonomous profiling floats), indirect estimates applying budgetary approaches, state estimates or ocean reanalyses, and proxies. Based on the existing observations and their results, and the potential of new observational and formal synthesis approaches, we make suggestions as to how to evaluate a comprehensive, future-proof observational network of the AMOC to deepen our understanding of the AMOC and its role in global climate.
    Description: OSNAP is funded by the US National Science Foundation (NSF, OCE-1259013), UK Natural Environment Research Council (NERC, projects: OSNAP NE/K010875/1, Extended Ellett Line and ACSIS); China's national key research and development projects (2016YFA0601803), the National Natural Science Foundation of China (41521091 and U1606402) and the Fundamental Research Funds for the Central Universities (201424001); the German Ministry BMBF (RACE program); Fisheries and Oceans Canada (DFO: AZOMP). Additional support was received from the European Union 7th Framework Programme (FP7 2007–2013: NACLIM 308299) and the Horizon 2020 program (Blue-Action 727852, ATLAS 678760, AtlantOS 633211), and the French Centre National de la Recherche Scientifique (CNRS). RAPID and MOCHA moorings at 26°N are funded by NERC and NSF (OCE1332978). ABC fluxes is funded by the NERC RAPID-AMOC program (grant number: NE/M005046/1). Florida Current cable array is funded by the US National Oceanic and Atmospheric Administration (NOAA). The Meridional Overturning Variability Experiment (MOVE) was funded by the NOAA Climate Program Office-Ocean Observing and Monitoring Division, and initially by the German Federal Ministry of Education and Research (BMBF). SAMBA 34.5°S is funded by the NOAA Climate Program Office-Ocean Observing and Monitoring Division (100007298), the French SAMOC project (11–ANR-56-004), from Brazilian National Council for Scientific and Technological development (CNPq: 302018/2014-0) and Sao Paulo Research Foundation (FAESP: SAMOC-Br grants 2011/50552-4 and 2017/09659-6), the South African DST-NRF-SANAP program and South African Department of Environmental Affairs. The Line W project was funded by NSF (grant numbers: OCE-0726720, 1332667, and 1332834), with supplemental contributions from Woods Hole Oceanographic Institution (WHOI)'s Ocean and Climate Change Institute. The Oleander Program is funded by NOAA and NSF (grant numbers: OCE1536517, OCE1536586, OCE1536851). The 47°N array NOAC is funded by the BMBF (grant numbers: 03F0443C, 03F0605C, 03F0561C, 03F0792A). The Senate Commission of Oceanography from the DFG granted shiptime and costs for travel, transports and consumables. JB's work is funded by DFG under Germany's Excellence Strategy (EXC 2037 Climate, Climatic Change, and Society, Project Number: 390683824), contribution to the Center for Earth System Research and Sustainability (CEN) of Universitat Hamburg. LCJ was funded by the Copernicus Marine Environment Monitoring Service (CMEMS: 23-GLO-RAN LOT 3). MSL was supported by the Overturning in the Subpolar North Atlantic Program (NSF grant: OCE-1259013). GDM was supported by the Blue-Action project (European Union's Horizon 2020 research and innovation programme, grant number: 727852). HM was supported by CNRS. RH acknowledges financial support by the BMBF as part of the cooperative projects RACE (03F0605B, 03F0824C). The National Centre for Atmospheric Research (NCAR) is sponsored by NSF under Cooperative Agreement No. 1852977. JKO was supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program (Grant NNX16AO39H).
    Keywords: Meridional overturning circulation ; Thermohaline circulation ; Observing systems ; Ocean heat transport ; Carbon storage ; Moorings ; Circulation variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...