GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (82)
  • Federal Agency for Nature Conservation  (3)
  • Wiley  (3)
  • Elsevier BV  (1)
  • Inter Research  (1)
Document type
Keywords
Years
  • 1
    Publication Date: 2021-02-08
    Description: Ocean acidification (OA) is generally assumed to negatively impact calcification rates of marine organisms. At a local scale however, biological activity of macrophytes may generate pH fluctuations with rates of change that are orders of magnitude larger than the long-term trend predicted for the open ocean. These fluctuations may in turn impact benthic calcifiers in the vicinity. Combining laboratory, mesocosm and field studies, such interactions between OA, the brown alga Fucus vesiculosus, the sea grass Zostera marina and the blue mussel Mytilus edulis were investigated at spatial scales from decimetres to 100s of meters in the western Baltic. Macrophytes increased the overall mean pH of the habitat by up to 0.3 units relative to macrophyte-free, but otherwise similar, habitats and imposed diurnal pH fluctuations with amplitudes ranging from 0.3 to more than 1 pH unit. These amplitudes and their impact on mussel calcification tended to increase with increasing macrophyte biomass to bulk water ratio. At the laboratory and mesocosm scales, biogenic pH fluctuations allowed mussels to maintain calcification even under acidified conditions by shifting most of their calcification activity into the daytime when biogenic fluctuations caused by macrophyte activity offered temporal refuge from OA stress. In natural habitats with a low biomass to water body ratio, the impact of biogenic pH fluctuations on mean calcification rates of M. edulis was less pronounced. Thus, in dense algae or seagrass habitats, macrophytes may mitigate OA impact on mussel calcification by raising mean pH and providing temporal refuge from acidification stress.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: image
    Format: image
    Format: image
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-24
    Description: Stress often induces metabolically expensive countermeasures. Bivalve shell production is costly and can thus be indirectly impacted by environmental stress. Suboptimal salinity and temperature may constitute stressors that allocate energy away from shell production to cellular processes such as osmoregulation or to the repair of cellular damage. In the course of climate change, water temperatures of the Baltic Sea are predicted to increase, and salinity is predicted to regionally decrease. These shifts may lead to increased stress for temperate marine species adapted to relatively cool water temperatures and high salinity conditions. To better understand the importance of climate change-related stress, we assessed the isolated and interactive effects of salinity and temperature on shell increment (cumulative growth: shell), cellular oxidative stress (accumulation of oxidized lipids and proteins: lipofuscin), instantaneous physiological condition (condition index: CI), and mortality of young Mytilus edulis and Arctica islandica from the western Baltic Sea. Temperature and salinity interactively affected shell increment, lipofuscin accumulation, and mortality of M. edulis as well as shell increment of A. islandica. Shell increment of M. edulis was less affected by hyposalinity than shell increment of A. islandica. In both species the CI decreased and lipofuscin accumulation increased with increasing temperature. Lipofuscin accumulation negatively correlated with shell increment in M. edulis. We conclude that Baltic Sea populations of ecologically relevant bivalve species may experience severe stress by the predicted regional scenario of warming and desalination if evolutionary adaptation does not happen at a similar rate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Federal Agency for Nature Conservation
    In:  In: Threatened Biodiversity in the German North and Baltic Seas: Sensitivities towards Human Activities and the Effects of Climate Change. , ed. by Narberhaus, I., Krause, J. and Bernitt, U. Naturschutz und Biologische Vielfalt, 116 . Federal Agency for Nature Conservation, Bonn-Bad Godesberg, Germany, pp. 41-210. ISBN 978-3-7843-4017-3
    Publication Date: 2012-11-27
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Federal Agency for Nature Conservation
    In:  In: Threatened Biodiversity in the German North and Baltic Seas: Sensitivities towards Human Activities and the Effects of Climate Change. , ed. by Narberhaus, I., Krause, J. and Bernitt, U. Naturschutz und Biologische Vielfalt, 116 . Federal Agency for Nature Conservation, Bonn, Germany, pp. 27-41. ISBN 978-3-7843-4017-3
    Publication Date: 2019-09-23
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Federal Agency for Nature Conservation
    In:  In: Threatened Biodiversity in the German North and Baltic Seas: Sensitivities towards Human Activities and the Effects of Climate Change. , ed. by Narberhaus, I., Krause, J. and Bernitt, U. Naturschutz und Biologische Vielfalt, 116 . Federal Agency for Nature Conservation, Bonn-Bad Godesberg, Germany, pp. 211-247. ISBN 978-3-7843-4017-3
    Publication Date: 2019-09-23
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography) | Wiley
    Publication Date: 2024-06-24
    Description: The simulation of deep-sea conditions in laboratories is technically challenging but necessary for experiments that aim at a deeper understanding of physiological mechanisms or host-symbiont interactions of deep-sea organisms. In a proof-of-concept study, we designed a recirculating system for long-term culture (〉2 yr) of deep-sea mussels Gigantidas childressi (previously Bathymodiolus childressi). Mussels were automatically (and safely) supplied with a maximum stable level of ~60 μmol L−1 methane in seawater using a novel methane–air mixing system. Experimental animals also received daily doses of live microalgae. Condition indices of cultured G. childressi remained high over the years, and low shell growth rates could be detected, too, which is indicative of positive energy budgets. Using stable isotope data, we demonstrate that G. childressi in our culture system gained energy, both, from the digestion of methane-oxidizing endosymbionts and from digesting particulate food (microalgae). Limitations of the system, as well as opportunities for future experimental approaches involving deep-sea mussels, are discussed.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: The plea for using more “realistic,” community‐level, investigations to assess the ecological impacts of global change has recently intensified. Such experiments are typically more complex, longer, more expensive, and harder to interpret than simple organism‐level benchtop experiments. Are they worth the extra effort? Using outdoor mesocosms, we investigated the effects of ocean warming (OW) and acidification (OA), their combination (OAW), and their natural fluctuations on coastal communities of the western Baltic Sea during all four seasons. These communities are dominated by the perennial and canopy‐forming macrophyte Fucus vesiculosus—an important ecosystem engineer Baltic‐wide. We, additionally, assessed the direct response of organisms to temperature and pH in benchtop experiments, and examined how well organism‐level responses can predict community‐level responses to the dominant driver, OW. OW affected the mesocosm communities substantially stronger than acidification. OW provoked structural and functional shifts in the community that differed in strength and direction among seasons. The organism‐level response to OW matched well the community‐level response of a given species only under warm and cold thermal stress, that is, in summer and winter. In other seasons, shifts in biotic interactions masked the direct OW effects. The combination of direct OW effects and OW‐driven shifts of biotic interactions is likely to jeopardize the future of the habitat‐forming macroalga F. vesiculosus in the Baltic Sea. Furthermore, we conclude that seasonal mesocosm experiments are essential for our understanding of global change impact because they take into account the important fluctuations of abiotic and biotic pressures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-07-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: image/png
    Format: application/pdf
    Format: image/png
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-03-07
    Description: Brachiopods present a key fossil group for Phanerozoic palaeo-environmental and palaeo-oceanographical reconstructions, owing to their good preservation and abundance in the geological record. Yet to date, hardly any geochemical proxies have been calibrated in cultured brachiopods and only little is known on the mechanisms that control the incorporation of various key elements into brachiopod calcite. To evaluate the feasibility and robustness of multiple Element/Ca ratios as proxies in brachiopods, specifically Li/Ca, B/Ca, Na/Ca, Mg/Ca, Sr/Ca, Ba/Ca, as well as Li/Mg, we cultured Magellania venosa, Terebratella dorsata and Pajaudina atlantica under controlled experimental settings over a period of more than two years with closely monitored ambient conditions, carbonate system parameters and elemental composition of the culture medium. The experimental setup comprised of two control aquariums (pH0 = 8.0 and 8.15, T = 10 °C) and treatments where pCO2 − pH (pH1 = 7.6 and pH2 = 7.35), temperature (T = 16 °C) and chemical composition of the culture medium were manipulated. Our results indicate that the incorporation of Li and Mg is strongly influenced by temperature, growth effects as well as carbonate chemistry, complicating the use of Li/Ca, Mg/Ca and Li/Mg ratios as straightforward reliable proxies. Boron partitioning varied greatly between the treatments, however without a clear link to carbonate system parameters or other environmental factors. The partitioning of both Ba and Na varied between individuals, but was not systematically affected by changes in the ambient conditions. We highlight Sr as a potential proxy for DIC, based on a positive trend between Sr partitioning and carbonate chemistry in the culture medium. To explain the observed dependency and provide a quantitative framework for exploring elemental variations, we devise the first biomineralisation model for brachiopods, which results in a close agreement between modelled and measured Sr distribution coefficients. We propose that in order to sustain shell growth under increased DIC, a decreased influx of Ca2+ to the calcifying fluid is necessary, driving the preferential substitution of Sr2+ for Ca2+ in the crystal lattice. Finally, we conducted micro-computed tomography analyses of the shells grown in the different experimental treatments. We present pore space – punctae – content quantification that indicates that shells built under increased environmental stress, and in particular elevated temperature, contain relatively more pore space than calcite, suggesting this parameter as a potential novel proxy for physiological stress and even environmental conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-03-14
    Description: This dataset is part of a dataset collection. Please read the documentation in Kiel fjord carbonate chemistry data between 2015 (February) and 2016 (January) doi:10.1594/PANGAEA.876551 for details on sampling, measurement and data processing.
    Keywords: Alkalinity, total; Carbon, inorganic, dissolved; Carbon dioxide, partial pressure; CO2S; CO2 Sensor; DATE/TIME; DEPTH, water; interpolated; Kiel Fjord; Kiel-Fjord_GEOMAR; pH; Phosphate; Salinity; Silicate; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 232 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...