GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Developmental Biology 48 (1976), S. 392-399 
    ISSN: 0012-1606
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Applied Animal Behaviour Science 25 (1990), S. 107-123 
    ISSN: 0168-1591
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Thin Solid Films 171 (1989), S. 251-262 
    ISSN: 0040-6090
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0040-4039
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Defining a precise timeline for past eruptions from explosive volcanoes in continental arcs is imperative to forecast future hazards and mitigate volcanic disasters in these often densely populated regions. However, establishing reliable ages for Quaternary eruptions in the Central American Volcanic Arc has been challenging due to the common lack or alteration of suitable K-rich phases for 40Ar/39Ar geochronology, but also from their position in time beyond the reach of 14C dating. This especially holds for the active Amatitlán caldera in Guatemala, from which at least six explosive silicic eruptions have produced tephra blanketing neighboring regions that are today inhabited by millions of people. Zircon, a common datable accessory mineral in Amatitlán caldera magmas, is used here to retrieve eruption ages by applying the novel zircon double-dating method (ZDD) that integrates 238U–230Th disequilibrium dating and (U–Th)/He thermochronology. This approach yielded the first-ever radioisotopic ages of 24 ± 3 ka and 48 ± 6 ka (1σ), respectively, of two of Amatitlán caldera's most recent eruptions (J-tephra and E-tephra). Remarkably, both zircon crystallization and ZDD eruption ages for the older and voluminous T-tephra and L-tephra units significantly post-date existing plagioclase 40Ar/39Ar dates by ca. 26 and 70 kyr, respectively. The ZDD eruption age for T-tephra is 93 ± 4 ka, whereas zircon crystallization ages for L-tephra yield a maximum model eruption age of ca. 124 ka. The strong eruption age divergence between ZDD and plagioclase 40Ar/39Ar dating argues for the presence of inherited or xenocrystic plagioclase in Amatitlán caldera eruptive products. Statistical analysis based on the updated eruptive history suggests a recurrence interval of ca. 17 kyr, which is significantly shorter than previously estimated. The new age data, thus, suggest a more frequent eruptive activity of Amatitlán caldera than formerly thought and underscores the necessity to better understand the current underlying magmatic system and to constrain its past eruptive history more precisely.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-14
    Description: Provenance studies of widely distributed tephra deposits are important to deduce systematic changes in the source, size, distribution, and temporal variation of regional explosive volcanism. Long-term deep ocean drilling sedimentary records are particularly useful for these kind of studies. In this study, we establish a robust tephrochronostratigraphy for 235 primary marine tephra layers collected during International Ocean Discovery Program Expeditions 353, 354, and 362, complemented by older drill cores from Deep Sea Drilling Program and Ocean Drilling Program Legs 22, 119, 120, 121, and 183. We infer at least two major phases of highly explosive arc volcanism during the Early Miocene to Pleistocene, as well as three episodes related to explosive ocean island volcanism located in the Kerguelen plateau, the Broken Ridge, and close to Réunion reaching back to the Paleogene. Twenty-two widespread arc-derived tephra layers from individual eruptions can be correlated by geochemical fingerprinting between multiple holes. These provide nine Quaternary and 13 Neogene temporal tie points in the sedimentary sequence including four new Usingle bondPb zircon ages. Provenance analysis of the marine tephra layers, which is based on glass composition, assign eleven of these layers to a Toba-like source, ranging from 24 Ma to 75 ka, with the youngest correlative being Young Toba Tuff. Based on distribution pattern, thickness decay, and compositional evidence another eleven tephra layers can be assigned to a northern Sumatran Arc or to an Andaman Arc provenance. First-order minimum eruptive volume estimates for the Neogene tephra layers imply eruptive magnitudes ranging from M = 6.5 to M = 7.5, proving a continuous history of large explosive eruptions from the Sumatran/Andaman Arc since the Neogene, as previously known from the Quaternary.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-14
    Description: The Toba Caldera on Sumatra, Indonesia is the host of the Young Toba eruption (~74 ka), globally one of the largest and most recognized eruptions during the Quaternary and regionally concentrated in the eastern Indian Ocean. Three older deposits (Middle, and Old Toba Tuff as well as Haranggaol Dacite Tuff) are also attributed to Toba caldera, with their eruption products distributed over the Indian Ocean. We present the Quaternary marine tephra record from an array of 14 sites and 28 holes from deep ocean drilling programs, complementing earlier work on distal to ultra-distal Indian Ocean sediment cores and terrestrial distribution data of Toba deposits. A unique set of major and trace element glass-shard compositions on 115 primary ash layers together with glass shard morphologies, core pictures and statistical analysis support geochemical fingerprinting between marine tephra layers and known deposits from Toba and five so far unidentified medium to large eruptions assigned to northern Sumatra. Additionally, zircon crystallization ages have been determined for the Haranggaol Dacite Tuff resulting in a new maximum eruption age of 1.42 ± 0.034 Ma. Tephra volumes and magma masses for the (co-ignimbrite) fallout are estimated based on the compiled marine tephra distribution that are complemented by published proximal ignimbrite volumes. For YTT the resulting tephra and DRE volumes of 5600 km3 and 3600 km3, respectively, are in between the previous estimates. For MTT (253 km3 DRE), ODT (1550 km3 DRE), HDT (129 km3 DRE), and the five additionally identified eruptions from Northern-Sumatran volcanoes, new magma volumes have been determined. Overall, the Indian Ocean tephra record reveals in one large eruption every 200 kyr in the Quaternary that is derived from northern Sumatra.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-14
    Description: Alteration of volcanogenic aluminosilicates (VAs) in marine sediments is recognized as critical in regulating geochemical cycles and sustaining the oceanic deep biosphere, but rates of VA alteration and its associated authigenic mineral formation are not commonly reported. Here we present results on analyses of sediments and pore water recovered from the upper 150 mbsf of four sites drilled on the northern Hikurangi margin during IODP Expeditions 372 and 375. Petrographic analyses show that volcanogenic materials (glass shards, feldspar, volcanic lithoclasts) constitute important components (15–45 wt%) of the hemipelagic mud, and reveal ongoing glass alteration with accompanying authigenic phase formation. A reaction-transport model constrained by pore water Sr, 87Sr/86Sr, Ca, Mg, and Si was applied to simulate VA diagenetic reactions. Our model results yield VA alteration rates of 0.047–0.64 mmol Sr m−2 yr−1, with substantially higher values at Sites U1517 and U1520 that experienced rapid sediment emplacement. In addition, our simulations show that 〉99% of the dissolved Si generated by VA alteration is fixed in silica cement and authigenic clay, and that ∼50% of Ca incorporated in the authigenic carbonate is supplied by VA alteration. First-order estimates suggest that, in addition to authigenic carbonate precipitation, authigenic clay formation may represent an important sink for dissolved Mg. This study quantitatively examines the linkage between VA alteration and formation of authigenic phases, highlights its role in subsurface geochemical cycles, and indicates that slope instability may play an important role in promoting VA diagenesis.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...