GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Geochimica et Cosmochimica Acta 209 (2017): 123-134, doi:10.1016/j.gca.2017.04.006.
    Description: Coral barium to calcium (Ba/Ca) ratios have been used to reconstruct records of upwelling, river and groundwater discharge, and sediment and dust input to the coastal ocean. However, this proxy has not yet been explicitly tested to determine if Ba inclusion in the coral skeleton is directly proportional to seawater Ba concentration and to further determine how additional factors such as temperature and calcification rate control coral Ba/Ca ratios. We measured the inclusion of Ba within aquaria reared juvenile corals (Favia fragum) at three temperatures (∼27.7, 24.6 and 22.5 °C) and three seawater Ba concentrations (73, 230 and 450 nmol kg−1). Coral polyps were settled on tiles conditioned with encrusting coralline algae, which complicated chemical analysis of the coral skeletal material grown during the aquaria experiments. We utilized Sr/Ca ratios of encrusting coralline algae (as low as 3.4 mmol mol−1) to correct coral Ba/Ca for this contamination, which was determined to be 26 ± 11% using a two end member mixing model. Notably, there was a large range in Ba/Ca across all treatments, however, we found that Ba inclusion was linear across the full concentration range. The temperature sensitivity of the distribution coefficient is within the range of previously reported values. Finally, calcification rate, which displayed large variability, was not correlated to the distribution coefficient. The observed temperature dependence predicts a change in coral Ba/Ca ratios of 1.1 μmol mol−1 from 20 to 28 °C for typical coastal ocean Ba concentrations of 50 nmol kg−1. Given the linear uptake of Ba by corals observed in this study, coral proxy records that demonstrate peaks of 10–25 μmol mol−1 would require coastal seawater Ba of between 60 and 145 nmol kg−1. Further validation of the coral Ba/Ca proxy requires evaluation of changes in seawater chemistry associated with the environmental perturbation recorded by the coral as well as verification of these results for Porites species, which are widely used in paleo reconstructions.
    Description: M.E.G. was supported by a NDSEG graduate fellowship. Funding for this research came from the NSF Chemical Oceanography program (OCE-0751525) and the Coastal Ocean Institute, the Ocean and Climate Change Institute and the Ocean Ventures Fund at Woods Hole Oceanographic Institution.
    Keywords: Coral Ba/Ca ; Barium ; Aragonite ; Distribution coefficient ; Favia fragum
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Chemistry 206 (2018): 7-18, doi:10.1016/j.marchem.2018.08.005.
    Description: The lateral export of carbon from coastal marshes via tidal exchange is a key component of the marsh carbon budget and coastal carbon cycles. However, the magnitude of this export has been difficult to accurately quantify due to complex tidal dynamics and seasonal cycling of carbon. In this study, we use in situ, high-frequency measurements of dissolved inorganic carbon (DIC) and water fluxes to estimate lateral DIC fluxes from a U.S. northeastern salt marsh. DIC was measured by a CHANnelized Optical Sensor (CHANOS) that provided an in situ concentration measurement at 15-min intervals, during periods in summer (July – August) and late fall (December). Seasonal changes in the marsh had strong effects on DIC concentrations, while tidally-driven water fluxes were the fundamental vehicle of marsh carbon export. Episodic events, such as groundwater discharge and mean sea water level changes, can impact DIC flux through altered DIC concentrations and water flow. Variability between individual tides within each season was comparable to mean variability between the two seasons. Estimated mean DIC fluxes based on a multiple linear regression (MLR) model of DIC concentrations and high-frequency water fluxes agreed reasonably well with those derived from CHANOS DIC measurements for both study periods, indicating that high-frequency, modeled DIC concentrations, coupled with continuous water flux measurements and a hydrodynamic model, provide a robust estimate of DIC flux. Additionally, an analysis of sampling strategies revealed that DIC fluxes calculated using conventional sampling frequencies (hourly to two-hourly) of a single tidal cycle are unlikely to capture a representative mean DIC flux compared to longer-term measurements across multiple tidal cycles with sampling frequency on the order of tens of minutes. This results from a disproportionately large amount of the net DIC flux occurring over a small number of tidal cycles, while most tides have a near-zero DIC export. Thus, high-frequency measurements (on the order of tens of minutes or better) over the time period of interest are necessary to accurately quantify tidal exports of carbon species from salt marshes.
    Description: This work was funded by NSF Graduate Research Fellowship Program, NSF Ocean Sciences Postdoctoral Fellowship (OCE-1323728), Link FoundationOcean Engineering and Instrumentation Fellowship, National Institute of Science and Technology (NIST no. 60NANB10D024), the USGS LandCarbon and Coastal & Marine Geology Programs, NSF Chemical Oceanography Program (OCE-1459521), NSF Ocean Technology and Interdisciplinary Coordination program (OCE-1233654) and NOAA Science Collaborative (NA09NOS4190153).
    Keywords: Dissolved inorganic carbon ; Carbon export ; Salt marshes ; Wetlands
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...