GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Formylmethanofuran dehydrogenase ; Tungsten enzymes ; Molybdopterin dinucleotides ; Methanogenesis ; Archaea ; Archaebacteria ; Methanobacterium thermoautotrophicum ; Methanobacterium wolfei
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Methanobacterium thermoautotrophicum (strain Marburg) was found to grow on media supplemented with tungstate rather than with molybdate. The Archaeon then synthesized a tungsten iron-sulfur isoenzyme of formylmethanofuran dehydrogenase. The isoenzyme was purified to apparent homogeneity and shown to be composed of four different subunits of apparent molecular masses 65 kDa, 53 kDa, 31 kDa, and 15 kDa and to contain per mol 0.4 mol tungsten, 〈0.05 mol molybdenum, 8 mol non-heme iron, 8 mol acid-labile sulfur and molybdopterin guanine dinucleotide. Its molecular and catalytic properties were significantly different from those of the molybdenum isoenzyme characterized previously. The two isoenzymes also differed in their metal specificity: the active molybdenum isoenzyme was only synthesized when molybdenum was available during growth whereas the active tungsten isoenzyme was also generated during growth of the cells on molybdate medium. Under the latter conditions the tungsten isoenzyme was synthesized containing molybdenum rather than tungsten.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Key words: Formylmethanofuran dehydrogenase – Tungsten enzymes – Molybdopterin dinucleotides – Methanogenesis – Archaea – Archaebacteria –Methanobacterium thermoautotrophicum–Methanobacterium wolfei
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Methanobacterium thermoautotrophicum (strain Marburg) was found to grow on media supplemented with tungstate rather than with molybdate. The Archaeon then synthesized a tungsten iron-sulfur isoenzyme of formylmethanofuran dehydrogenase. The isoenzyme was purified to apparent homogeneity and shown to be composed of four different subunits of apparent molecular masses 65 kDa, 53 kDa, 31 kDa, and 15 kDa and to contain per mol 0.4 mol tungsten, 〈0.05 mol molybdenum, 8 mol non-heme iron, 8 mol acid-labile sulfur and molybdopterin guanine dinucleotide. Its molecular and catalytic properties were significantly different from those of the molybdenum isoenzyme characterized previously. The two isoenzymes also differed in their metal specificity: the active molybdenum isoenzyme was only synthesized when molybdenum was available during growth whereas the active tungsten isoenzyme was also generated during growth of the cells on molybdate medium. Under the latter conditions the tungsten isoenzyme was synthesized containing molybdenum rather than tungsten.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Tungsten enzymes ; Molybdenum enzymes ; Formylmethanofuran dehydrogenase ; Methanogenic Archaea ; Methanosarcina barkeri ; Methanobacterium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cell extracts of Methanosarcina barkeri grown on methanol in media supplemented with molybdate exhibited a specific activity of formylmethanofuran dehydrogenase of approximately 1 U (1 μmol/min)/mg protein. When the growth medium was supplemented with tungstate rather than with molybdate, the specific activity was only 0.04 U/mg. Despite this reduction in specific activity growth on methanol was not inhibited. An inhibition of both growth and synthesis of active formylmethanofuran dehydrogenase was observed, however, when H2 and CO2 were the energy substrates. The results indicate that, in contrast to Methanobacterium wolfei and Methanobacterium thermoautotrophicum, M. barkeri possesses only a molybdenum containing formylmethanofuran dehydrogenase and not in addition a tungsten isoenzyme.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Current microbiology 41 (2000), S. 357-362 
    ISSN: 1432-0991
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Internal pool sizes of glutamine and glutamate in Klebsiella pneumoniae grown under nitrogen limitation or nitrogen sufficiency were measured to study the signal transduction of external nitrogen limitation. K. pneumoniae cells were grown in an anaerobic, ammonium-limited chemostat culture. At a growth rate of 0.217 h−1, the steady state ammonium concentration in the culture was 55 μm, correlating with repression of the nitrogen fixation (nif) genes. At growth rates below 0.138 h−1, the ammonium concentration in the culture dropped below 0.5 μm and the nif genes became derepressed. During the transition from nitrogen sufficiency to nitrogen limitation, the internal glutamine pool in K. pneumoniae decreased by a factor of approximately 6. The glutamate pool, however, remained stable. Similarly, in anaerobic batch cultures with different limiting nitrogen sources, the glutamine pool generally decreased by a factor of 7 to 9 when nif gene derepression was achieved. All the limiting nitrogen sources used resulted in decreased growth rates compared with growth under nitrogen excess, suggesting an inverse relationship between glutamine pool size and doubling time. These studies indicate that K. pneumoniae perceives external nitrogen limitation as internal glutamine limitation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-08
    Description: From protists to humans, all animals and plants are inhabited by microbial organisms. There is an increasing appreciation that these resident microbes influence the fitness of their plant and animal hosts, ultimately forming a metaorganism consisting of a uni- or multicellular host and a community of associated microorganisms. Research on host–microbe interactions has become an emerging cross-disciplinary field. In both vertebrates and invertebrates a complex microbiome confers immunological, metabolic and behavioural benefits; conversely, its disturbance can contribute to the development of disease states. However, the molecular and cellular mechanisms controlling the interactions within a metaorganism are poorly understood and many key interactions between the associated organisms remain unknown. In this perspective article, we outline some of the issues in interspecies interactions and in particular address the question of how metaorganisms react and adapt to inputs from extreme environments such as deserts, the intertidal zone, oligothrophic seas, and hydrothermal vents
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: Highlights: • Non-indigenous species (NIS) are increasingly recognized as a matter of concern. • The microbiome of native and NIS gelatinous zooplankton organisms are compared. • Next generation sequencing confirms sign. Species specific microbiome differences. • Indicator OTUs include bacteria which contain known pathogenic strains. • Microbiome monitoring of NIS should be considered for aquaculture risk assessments. Abstract: The translocation of non-indigenous species (NIS) around the world, especially in marine systems, is increasingly being recognized as a matter of concern. Species translocations have been shown to lead to wide ranging changes in food web structure and functioning. In addition to the direct effects of NIS, they could facilitate the accumulation or translocation of bacteria as part of their microbiomes. The Baltic Sea harbours many non-indigenous species, with most recent detection of the jellyfish Blackfordia virginica and the comb jelly Mnemiopsis leidyi in the low saline southwestern Baltic Sea. In this study, we used a multidisciplinary approach and investigated three gelatinous zooplankton species that co-occur in the same environment and feed on similar zooplankton food sources but show different histories of origin. The aim was to conduct a comparative microbiome analysis of indigenous and non-indigenous gelatinous zooplankton species in the low-saline southwestern Baltic Sea. Next-generation 16S rRNA marker gene sequencing of the V1/V2 region was employed to study the bacterial microbiome compositions. All tested species showed significant differences in their microbiome compositions (one way ANOSIM, R = 1, P 〈 0.008) with dissimilarities ranging from 85 to 92%. The indigenous jellyfish Aurelia aurita showed the highest bacterial operational taxonomic unit (OTU) richness. The overall differentiation between microbiomes was driven by eight indicator OTUs, which included Mycoplasma and Vibrio species. These bacteria can be problematic, as they include known pathogenic strains that are relevant to human health and aquaculture activities. Our results suggest that the impact assessment of NIS should consider potential pathogenic bacteria, enriched in the environment due to invasion, as potential risks to aquaculture activities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...