GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (1)
  • Public Library of Science  (1)
  • 1
    Publication Date: 2019-02-01
    Description: Ocean acidification and warming (OAW) are occurring globally. Additionally, at a more local scale the spreading of hypoxic conditions is promoted by eutrophication and warming. In the semi-enclosed brackish Baltic Sea, occasional upwelling in late summer and autumn may expose even shallow-water communities including the macroalga Fucus vesiculosus to particularly acidified, nutrient-rich and oxygen-poor water bodies. During summer 2014 (July–September) sibling groups of early life-stage F. vesiculosus were exposed to OAW in the presence and absence of enhanced nutrient levels and, subsequently to a single upwelling event in a near-natural scenario which included all environmental fluctuations in the Kiel Fjord, southwestern Baltic Sea, Germany (54°27 ´N, 10°11 ´W). We strove to elucidate the single and combined impacts of these potential stressors, and how stress sensitivity varies among genetically different sibling groups. Enhanced by a circumstantial natural heat wave, warming and acidification increased mortalities and reduced growth in F. vesiculosus germlings. This impact, however, was mitigated by enhanced nutrient conditions. Survival under OAW conditions strongly varied among sibling groups hinting at a substantial adaptive potential of the natural Fucus populations in the Western Baltic. A three-day experimental upwelling caused severe mortality of Fucus germlings, which was substantially more severe in those sibling groups which previously had been exposed to OAW. Our results show that global (OAW), regional (nutrient enrichment) and local pressures (upwelling), both alone and co-occurring may have synergistic and antagonistic effects on survival and/or growth of Fucus germlings. This result emphasizes the need to consider combined stress effects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Experimental Marine Biology and Ecology, 471 . pp. 8-16.
    Publication Date: 2015-06-15
    Description: Highlights: • Acclimation of Fucus vesiculosus under a highly resolved temperature gradient. • Fucus vesiculosus exhibits a broad temperature optimum for growth from 10 to 24 °C. • Upper survival temperature of Fucus vesiculosus is between 26 and 27 °C. • Optimal temperature for photosynthesis is higher compared to that for growth. • Fucus in the Baltic Sea may become a “loser” under increasing temperatures. Abstract: Seaweeds provide important ecosystem services in coastal areas, and loss of these macrophytes due to anthropogenic global change and warming is a worldwide concern. Fucus vesiculosus L. (Phaeophyceae) is the most abundant and hence ecologically most important primary producer, carbon sink and habitat provider in the western Baltic Sea. Therefore, we used this keystone species to test phenotypic acclimation of physiological performance traits (growth, photosynthesis and metabolites) of F. vesiculosus apices in a well-defined and highly resolved temperature gradient (5–29 °C), supported by highly temporally resolved measurements. Temperature requirements of growth and photosynthesis were evaluated in three weeks exposure experiments, and changing tolerance ranges for survival over time were determined. Fucus vesiculosus was able to grow and survive over a temperature range from 5 to 26 °C without any injury or visible damage of the apical growing meristem over all three weeks. However, at higher water temperatures (≥ 27 °C) growth rapidly decreased from day three onwards and progressive necrosis was observed at 28 and 29 °C. Stress-induced decrease in growth rate was already indicated by the effective quantum yield of chlorophyll fluorescence of photosystem II (PSII) several days in advance. Optimal temperature for photosynthesis (24 °C), measured as electron transport rate, was higher compared to that for growth (15–20 °C). Accordingly, the concentration of mannitol, the main product of photosynthesis, increased with higher temperatures. Understanding physiological responses of keystone macroalgae with respect to temperature and time is important, because rising global temperatures and summer heat wave frequencies and duration may affect the ecological functions of F. vesiculosus in the western Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...