GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: The manganese nodule belt within the Clarion and Clipperton Fracture Zones (CCZ) in the abyssal NE Pacific Ocean is characterized by numerous seamounts, low organic matter (OM) depositional fluxes and meter-scale oxygen penetration depths (OPD) into the sediment. The region hosts contract areas for the exploration of polymetallic nodules and Areas of Particular Environmental Interest (APEI) as protected areas. In order to assess the impact of potential mining on these deep-sea sediments and ecosystems, a thorough determination of the natural spatial variability of depositional and geochemical conditions as well as biogeochemical processes and element fluxes in the different exploration areas is required. Here, we present a comparative study on (1) sedimentation rates and bioturbation depths, (2) redox zonation of the sediments and element fluxes as well as (3) rates and pathways of biogeochemical reactions at six sites in the eastern CCZ. The sites are located in four European contract areas and in the APEI3. Our results demonstrate that the natural spatial variability of depositional and (bio)geochemical conditions in this deep-sea sedimentary environment is much larger than previously thought. We found that the OPD varies between 1 and 4.5 m, while the sediments at two sites are oxic throughout the sampled interval (7.5 m depth). Below the OPD, manganese and nitrate reduction occur concurrently in the suboxic zone with pore-water Mn2+ concentrations of up to 25 µM. The thickness of the suboxic zone extends over depth intervals of less than 3 m to more than 8 m. Our data and the applied transport-reaction model suggest that the extension of the oxic and suboxic zones is ultimately determined by the (1) low flux of particulate organic carbon (POC) of 1–2 mg Corg m−2 d−1 to the seafloor, (2) low sedimentation rates between 0.2 and 1.15 cm kyr−1 and (3) oxidation of pore-water Mn2+ at depth. The diagenetic model reveals that aerobic respiration is the main biogeochemical process driving OM degradation. Due to very low POC fluxes of 1 mg Corg m−2 d−1 to the seafloor at the site investigated in the protected APEI3 area, respiration rates are twofold lower than at the other study sites. Thus, the APEI3 site does not represent the (bio)geochemical conditions that prevail in the other investigated sites located in the European contract areas. Lateral variations in surface water productivity are generally reflected in the POC fluxes to the seafloor across the various areas but deviate from this trend at two of the study sites. We suggest that the observed spatial variations in depositional and (bio)geochemical conditions result from differences in the degree of degradation of OM in the water column and heterogeneous sedimentation patterns caused by the interaction of bottom water currents with seafloor topography.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-21
    Description: Ferromanganese (Fe–Mn) crusts are strongly enriched relative to the Earth's lithosphere in many rare and critical metals, including Co, Te, Mo, Bi, Pt, W, Zr, Nb, Y, and rare-earth elements (REEs). Fe–Mn nodules are strongly enriched in Ni, Cu, Co, Mo, Zr, Li, Y, and REEs. Compared to Fe–Mn crusts, nodules are more enriched in Ni, Cu, and Li, with subequal amounts of Mo and crusts are more enriched in the other metals. The metal ions and complexes in seawater are sorbed onto the two major host phases, FeO(OH) with a positively charged surface and MnO2 with a negatively charged surface. Metals are also derived from diagenetically modified sediment pore fluids and incorporated into most nodules. Seafloor massive sulfides (SMS), especially those in arc and back-arc settings, can also be enriched in rare metals and metalloids, such as Cd, Ga, Ge, In, As, Sb, and Se. Metal grades for the elements of economic interest in SMS (Cu, Zn, Au, Ag) are much greater than those in land-based volcanogenic massive sulfides. However, their tonnage throughout the global ocean is poorly known and grade/tonnage comparisons with land-based deposits would be premature. The Clarion–Clipperton Fe–Mn Nodule Zone (CCZ) in the NE Pacific and the prime Fe–Mn crust zone (PCZ) in the central Pacific are the areas of greatest economic interest for nodules and crusts and grades and tonnages for those areas are moderately well known. We compare the grades and tonnages of nodules and crusts in those two areas with the global terrestrial reserves and resources. Nodules in the CCZ have more Tl (6000 times), Mn, Te, Ni, Co, and Y than the entire global terrestrial reserve base for those metals. The CCZ nodules also contain significant amounts of Cu, Mo, W, Li, Nb, and rare earth oxides (REO) compared to the global land-based reserves. Fe–Mn crusts in the PCZ have significantly more Tl (1700 times), Te (10 times more), Co, and Y than the entire terrestrial reserve base. Other metals of significance in the PCZ crusts relative to the total global land-based reserves are Bi, REO, Nb, and W. CCZ nodules and PCZ crusts are also compared with the two largest existing land-based REE mines, Bayan Obo in China and Mountain Pass in the USA. The land-based deposits are higher grade but lower tonnage deposits. Notably, both land-based deposits have 〈 1% heavy REEs (HREEs), whereas the CCZ has 26% HREEs and the PCZ, 18% HREEs; the HREEs have a much greater economic value. Radioactive Th concentrations are appreciably higher in the land-based deposits than in either type of marine deposit. A discussion of the differences between terrestrial and marine impacts and mine characteristics is also presented, including the potential for rare metals and REEs in marine deposits to be recovered as byproducts of mining the main metals of economic interest in nodules and crusts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: In 2013, high-temperature vent fluids were sampled in the Nifonea vent field. This field is located within the caldera of a large shield-type volcano of the Vate Trough, a young extensional rift in the New Hebrides back-arc. Hydrothermal venting occurs as clear and black smoker fluids with temperatures up to 368 °C, the hottest temperatures measured so far in the western Pacific. The physico-chemical conditions place the fluids within the two-phase field of NaCl–H2O, and venting is dominated by vapour phase fluids with Cl concentrations as low as 25 mM. The fluid composition, which differs between the individual vent sites, is interpreted to reflect the specific geochemical fluid signature of a hydrothermal system in its initial, post-eruptive stage. The strong Cl depletion is accompanied by low alkali/Cl ratios compared to more evolved hydrothermal systems, and very high Fe/Cl ratios. The concentrations of REY (180 nM) and As (21 μM) in the most Cl-depleted fluid are among the highest reported so far for submarine hydrothermal fluids, whereas the inter-element REY fractionation is only minor. The fluid signature, which has been described here for the first time in a back-arc setting, is controlled by fast fluid passage through basaltic volcanic rocks, with extremely high water-rock ratios and only limited water-rock exchange, phase separation and segregation, and (at least) two-component fluid mixing. Metals and metalloids are unexpectedly mobile in the vapour phase fluids, and the strong enrichments of Fe, REY, and As highlight the metal transport capacity of low-salinity, low-density vapours at the specific physico-chemical conditions at Nifonea. One possible scenario is that the fluids boiled before the separated vapour phase continued to react with fresh glassy lavas. The mobilization of metals is likely to occur by leaching from fresh glass and grain boundaries and is supported by the high water/rock ratios. The enrichment of B and As is further controlled by their high volatility, whereas the strong enrichment of REY is also a consequence of the elevated concentrations in the host rocks. However, a direct contribution of metals such as As from magmatic degassing cannot be ruled out. The different fluid end-member composition of individual vent sites could be explained by mixing of vapour phase fluids with another fluid phase of different water/rock interaction history.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Numerous studies have provided compelling evidence that the Pacific Ocean has experienced substantial glacial/interglacial changes in bottom-water oxygenation associated with enhanced carbon dioxide storage in the glacial deep ocean. Under postulated low glacial bottom-water oxygen concentrations (O), redox zonation, biogeochemical processes and element fluxes in the sediments must have been distinctively different during the last glacial period (LGP) compared to current well-oxygenated conditions. In this study, we have investigated six sites situated in various European contract areas for the exploration of polymetallic nodules within the Clarion-Clipperton Zone (CCZ) in the NE Pacific and one site located in a protected Area of Particular Environmental Interest (APEI3) north of the CCZ. We found bulk sediment Mn maxima of up to 1 wt% in the upper oxic 10 cm of the sediments at all sites except for the APEI3 site. The application of a combined leaching protocol for the extraction of sedimentary Mn and Fe minerals revealed that mobilizable Mn(IV) represents the dominant Mn(oxyhydr)oxide phase with more than 70% of bulk solid-phase Mn. Steady state transport-reaction modeling showed that at postulated glacial O of 35 μM, the oxic zone in the sediments was much more compressed than today where upward diffusing pore-water Mn2+ was oxidized and precipitated as authigenic Mn(IV) at the oxic-suboxic redox boundary in the upper 5 cm of the sediments. Transient transport-reaction modeling demonstrated that with increasing O during the last glacial termination to current levels of ∼ 150 μM, (1) the oxic-suboxic redox boundary migrated deeper into the sediments and (2) the authigenic Mn(IV) peak was continuously mixed into subsequently deposited sediments by bioturbation causing the observed mobilizable Mn(IV) enrichment in the surface sediments. Such a distinct mobilizable Mn(IV) maximum was not found in the surface sediments of the APEI3 site, which indicates that the oxic zone was not as condensed during the LGP at this site due to two- to threefold lower organic carbon burial rates. Leaching data for sedimentary Fe minerals suggest that Fe(III) has not been diagenetically redistributed during the LGP at any of the investigated sites. Our results demonstrate that the basin-wide deoxygenation in the NE Pacific during the LGP was associated with (1) a much more compressed oxic zone at sites with carbon burial fluxes higher than 1.5 mg Corg m−2 d−1, (2) the authigenic formation of a sub-surface mobilizable Mn(IV) maximum in the upper 5 cm of the sediments and (3) a possibly intensified suboxic-diagenetic growth of polymetallic nodules. As our study provides evidence that authigenic Mn(IV) precipitated in the surface sediments under postulated low glacial O, it contributes to resolving a long-standing controversy concerning the origin of widely observed Mn-rich layers in glacial/deglacial deep-sea sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-04-04
    Description: Rare earth elements and yttrium (REY) are often used as proxies for (paleo)environmental conditions and for the reconstruction of element sources and transport pathways. Many geological systems are well described with respect to the behavior of REY but deep-sea sediments with their manifold processes impacting the sediment during early diagenesis leave some questions about the origin and development of the shale-normalized REY (REYSN) patterns unanswered. Here we report REY data for sediment solid phase and pore water from the upper 10 m of deep-sea sediments from the Clarion Clipperton Zone (CCZ) in the central equatorial Pacific. The solid-phase REY profiles show highest concentrations at depth below 5–8 m. The REYSN patterns show an enrichment in middle REY (MREY) (LaSN/GdSN between 0.35 and 0.60; GdSN/YbSN between 1.19 and 1.47) and either no or negative CeSN and YSN anomalies (i.e. chondritic to sub-chondritic Y/Ho ratios between 24.7 and 28.7). Based on correlation analyses of bulk sediment element concentrations and sequential extractions, we suggest that a Ca phosphate phase controls the distribution and the patterns of REY in these silty clay pelagic sediments rich in siliceous ooze. The MREY enrichment develops at the sediment-water interface and intensifies systematically with depth. The negative CeSN anomaly intensifies with depth possibly because Ce is mostly bound to Mn- and Fe-(oxyhydr)oxides. Therefore, Ce concentrations remain relatively constant throughout the sediment core, while its trivalent REY neighbors are mostly hosted by the Ca phosphate phase that continuously incorporates REY from ambient pore waters. The non-redox-sensitive trivalent REY concentrations increase with depth, producing or enhancing a negative CeSN anomaly through coupled substitution of REY3+ and Na+ for Ca2+. The solid-phase REYSN pattern is therefore determined by the pore-water REYSN pattern and not suitable for paleoceanographic interpretation. The similarity of the pore-water and solid-phase REYSN patterns suggests, however, that only minor fractionation occurs during REY incorporation into the Ca phosphate crystal structure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: The Amazon River has the largest drainage basin in the world, making it a major source of trace elements and dissolved organic matter (DOM) to the Atlantic Ocean. However, despite the increasing anthropogenic impacts to the Amazon basin, few recent studies exist quantifying trace element data in this region. The aim of the study was to analyze the input and removal processes that influence the transport of Ni and Co species in the Amazon and Pará River estuaries and mixing zone. Toward this goal, this work provides a comprehensive mixing and speciation study for the trace elements Ni and Co. Samples were collected during a period of high river discharge on the RV Meteor cruise M147 (Amazon – GEOTRACES process study GApr11) in the Amazon and Pará River outflow regions, as well as the aging mixing plume to the north, a mangrove belt to the southeast and the North Brazil Current (NBC) seawater endmember. Here we present the results for labile particulate (〉0.2 μm), labile and total dissolved (〈0.2 μm), large colloidal (0.015–0.2 μm), soluble (〈0.015 μm) and ultrafiltered (〈1 and 〈 10 kDa) fractions of Ni and Co in surface waters (towed-fish) and along the water column at different depths (CTD) samples using comparative approaches by adsorptive cathodic stripping voltammetry (AdCSV) and inductively coupled plasma-mass spectrometry (ICP-MS). We observed good agreement between AdCSV and ICP-MS measurements for Ni, and to a lesser extent Co. In general, dissolved and soluble Ni and Co decreased with increasing salinity, however additional non-conservative removal was also observed and attributed to possible biological uptake and colloidal flocculation. Shipboard AdCSV measurements showed that dissolved Ni was present mostly in the “reactive” form as weak complexes, suggesting high bioavailability, while reactive dissolved Co was absent, indicating the presence of strong organic Co complexes. In both Ni and Co, an elevated colloidal fraction was observed at low salinity, suggesting removal of dissolved Ni and Co via colloidal flocculation upon seawater mixing, while the soluble species were transported to the Atlantic Ocean. At depth, the soluble phase dominated, and we observed concentration maxima at 500–1000 m, indicating the presence of Antarctic Intermediate Water (AIW) and possible biological regeneration. We also observed unique source signatures in dissolved and labile particulate Ni and Co species from the Amazon and Pará River outflow regions, in addition to a contribution from mangrove belt-associated groundwater.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: The Amazon is Earth's largest river by volume output, making it an important source of trace metals and dissolved organic matter (DOM) to the Atlantic Ocean. Despite major recent anthropogenic disruptions to the Amazon catchment area, data for trace metals such as copper (Cu) in the Amazon River estuary and associated mixing plume are still rare. Furthermore, there is currently no existing data in this region for Cu-binding ligands, which govern the amount of bioavailable Cu. To understand trace metal mixing and transport processes, the GEOTRACES process study GApr11 (cruise M147 with RV Meteor) was conducted in 2018 in the Amazon and Pará River estuaries and mixing plume in the tropical North Atlantic Ocean during high river discharge. Size-fractionated surface samples were collected along the full salinity gradient for concentrations of Cu, apparent Cu-binding organic ligands (LCu) and corresponding conditional stability constants (K′CuL, Cu2+cond), electroactive humic substances (eHS), solid phase extractable organic Cu (SPE[sbnd]Cu), dissolved organic carbon (DOC), chlorophyll a (Chl a) and macronutrients. Dissolved (〈0.2 μm) and soluble (〈0.015 μm) Cu correlated negatively with salinity and largely followed values expected from conservative mixing. Cu was primarily in the soluble fraction, with the exception of a minor fraction of large colloidal Cu at low salinity (S ≤ 10). Organic ligands (log K′CuL, Cu2+cond = 12.6–15.6) were present in excess of Cu and likely played a role in solubilizing Cu and preventing Cu being affected by colloidal flocculation. Cu-associated DOM (measured as LCu, eHS and SPE[sbnd]Cu) correlated negatively with salinity and appeared to be primarily governed by river input and mixing with seawater. However, an increase in the colloidal fraction for LCu and eHS observed at S ~ 6–10 was attributed to possible additional autochthonous (phytoplankton) ligand production. In all dissolved samples, organic complexation kept free Cu below levels potentially toxic for phytoplankton (〈1 pmol L−1). Despite increasing anthropogenic activity over the past century, we find Cu concentrations remained similar to the 1970s, suggesting that the large overall river flow may so far minimize the impact of Cu pollution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Ultratrace concentrations of Ti were determined by catalytic differential pulse adsorptive stripping voltammetry (cDPAdSV) in samples collected in the Pará and Amazon estuaries and plume into the Atlantic Ocean. Different end members including rivers Tocantins, Amazon and Pará and Atlantic seawater were sampled as well as the salinity gradients in the mixing zone between the river outflows and waters from the North Brazil Current during several transects. The Mangrove Belt southeast of the Pará river mouth with its extensive groundwater discharge was also sampled. Most samples were taking during cruise M147 (GEOTRACES process study GApr11) during the high discharge period in April and May 2018. In addition to high resolution determination of dissolved Ti distributions in this region, size fractionation was investigated by using several filtration steps with pore sizes (0.2 μm, and 0.015 μm) and ultrafiltration (10 kDa and 1 kDa) at four selected stations. Dissolved Ti varied significantly between different river end members and showed a non-conservative behavior along the mixing gradients with strong removal at low salinities and some enrichments at higher salinity ranges. The results suggest that there was both adsorption and desorption of Ti from suspended particles from both riverine and marine sources or flocculation and aggregation of colloids and particulate matter from end member rivers as well as resuspension at particular salinity ranges. The 0.015 μm filtered and 10 kDa and 1 kDa ultrafiltered aliquots showed variable distributions of Ti in the different size fractions, depending on the sampling zone. This very complex behavior of Ti along the mixing gradient and the dynamic system of the Amazon estuary, which comprises a fifth of the global freshwater flux into the ocean, is the key to controlling the fluxes of Ti into the Atlantic.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-15
    Description: The Amazon and the Pará are two major rivers that carry dissolved and suspended particulate trace metals to the Atlantic Ocean. In the dynamic mixing zone of the estuary, competing processes of trace metal sorption and release play a role, which might affect transport to the open ocean. Here we investigate the behavior of dissolved (〈0.2 μm), soluble (〈0.015 μm) and truly dissolved (〈10 kDa and 〈 1 kDa) molybdenum (Mo), uranium (U), and vanadium (V) during estuarine mixing between river water (S 〈 1) and seawater (S 〉 35) end members during the high discharge period, as well as during aging of the plume in its northward flow along the coast. Molybdenum behaved conservatively during estuarine mixing and showed no colloidal fraction, suggesting Mo is solely present in the soluble or even truly dissolved fraction. Uranium behaved mostly conservatively but showed removal in the low salinity range (ca. S 〈 9). This is potentially due to colloidal flocculation at low salinities, as indicated by colloidal (0.015–0.2 μm) fractions of up to 30% for U but decreasing with increasing salinity until no significant difference could be discerned at S 〉 10. Vanadium shows a general conservative mixing, but with more scatter in the data than for Mo and U and potential removal at low to mid-salinities. Removal of V to the sediments is also indicated by surface sediment data from the mid-salinity region of the estuary but no size fractionation in the dissolved phase could be observed. Hence, V seems to be predominantly present in the soluble or even truly dissolved phase and export to the sediments might take place through particles 〉0.2 μm. No considerable removal or release of Mo, U and V was observed in their water column depth profiles, indicating a conservative behavior in the water column of the estuaries studied here. Additionally, we present a comparison of differential pulse adsorptive stripping voltammetry and inductively coupled plasma – mass spectrometry analyses for Mo and V, which showed excellent agreement within analytical uncertainty in this challenging sample material covering the full salinity range from freshwater to seawater.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-10-08
    Description: The manganese nodule belt within the Clarion and Clipperton Fracture Zones (CCZ) in the abyssal NE Pacific Ocean is characterized by numerous seamounts, low organic matter (OM) depositional fluxes and meter-scale oxygen penetration depths (OPD) into the sediment. The region hosts contract areas for the exploration of polymetallic nodules and Areas of Particular Environmental Interest (APEI) as protected areas. In order to assess the impact of potential mining on these deep-sea sediments and ecosystems, a thorough determination of the natural spatial variability of depositional and geochemical conditions as well as biogeochemical processes and element fluxes in the different exploration areas is required. Here, we present a comparative study on (1) sedimentation rates and bioturbation depths, (2) redox zonation of the sediments and element fluxes as well as (3) rates and pathways of biogeochemical reactions at six sites in the eastern CCZ. The sites are located in four European contract areas and in the APEI3. Our results demonstrate that the natural spatial variability of depositional and (bio)geochemical conditions in this deep-sea sedimentary environment is much larger than previously thought. We found that the OPD varies between 1 and 4.5 m, while the sediments at two sites are oxic throughout the sampled interval (7.5 m depth). Below the OPD, manganese and nitrate reduction occur concurrently in the suboxic zone with pore-water Mn2+ concentrations of up to 25 µM. The thickness of the suboxic zone extends over depth intervals of less than 3 m to more than 8 m. Our data and the applied transport-reaction model suggest that the extension of the oxic and suboxic zones is ultimately determined by the (1) low flux of particulate organic carbon (POC) of 1–2 mg Corg m−2 d−1 to the seafloor, (2) low sedimentation rates between 0.2 and 1.15 cm kyr−1 and (3) oxidation of pore-water Mn2+ at depth. The diagenetic model reveals that aerobic respiration is the main biogeochemical process driving OM degradation. Due to very low POC fluxes of 1 mg m−2 d−1 to the seafloor at the site investigated in the protected APEI3 area, respiration rates are twofold lower than at the other study sites. Thus, the APEI3 site does not represent the (bio)geochemical conditions that prevail in the other investigated sites located in the European contract areas. Lateral variations in surface water productivity are generally reflected in the POC fluxes to the seafloor across the various areas but deviate from this trend at two of the study sites. We suggest that the observed spatial variations in depositional and (bio)geochemical conditions result from differences in the degree of degradation of OM in the water column and heterogeneous sedimentation patterns caused by the interaction of bottom water currents with seafloor topography.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...