GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (2)
  • John Wiley & Sons  (1)
  • MINERALOGICAL SOC  (1)
  • 1
    Publication Date: 2015-01-13
    Description: Long chain alkyl diols form a group of lipids occurring widely in marine environments. Recent studies have suggested several palaeoclimatological applications for proxies based on their distributions, but have also revealed uncertainty about their applicability. Here we evaluate the use of long chain 1,14-alkyl diol indices for reconstruction of temperature and upwelling conditions by comparing index values, obtained from a comprehensive set of marine surface sediments, with environmental factors such as sea surface temperature (SST), salinity and nutrient concentration. Previous studies of cultures indicated a strong effect of temperature on the degree of saturation and the chain length distribution of long chain 1,14-alkyl diols in Proboscia spp., quantified as the diol saturation index (DSI) and diol chain length index (DCI), respectively. However, values of these indices for surface sediments showed no relationship with annual mean SST of the overlying water. It remains unknown as to what determines the DSI, although our data suggest that it may be affected by diagenesis, while the relationship between temperature and DCI may be different for different Proboscia species. In addition, contributions from algae other than Proboscia diatoms may affect both indices, although our data provide no direct evidence for additional long chain 1,14-alkyl diol sources. Two other indices using the abundance of 1,14-diols vs. 1,13-diols and C30 1,15- diols have been applied previously as indicators for upwelling intensity at different locations. The geographical distribution of their values supports the use of 1,14 diols vs. 1,13 diols [C28 + C30 1,14-diols]/[(C28 + C30 1,13-diols) + (C28 + C30 1,14-diols)] as a general indicator for high nutrient or upwelling conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-03-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    MINERALOGICAL SOC
    In:  EPIC3Mineralogical Magazine - P: Goldschidt Abstracts 2013, MINERALOGICAL SOC, 77(5), pp. 1991-1991, ISSN: 0026-461X
    Publication Date: 2019-07-17
    Description: Oceanic anoxic events (OAEs) were a frequent occurrence in the Cretaceous greenhouse ocean. Based on a variety of paleoredox indicators, euxinic water column conditions are commonly invoked for these OAEs. However, in a high resolution study of OAE3 deep sea sediments [1], revised paleoredox indicators suggest that euxinic conditions fluctuated with anoxic ferruginous conditions on orbital timescales. Building upon this, we here present new data for a continental shelf setting at Tarfaya, Morocco, that spans a period prior to, and during, the onset of OAE2. We again find strong evidence for orbital transitions from euxinic to ferruginous conditions. The presence of this distinct cyclicity during OAE2 and OAE3 in shallow and deep water settings, coupled with its occurrence on the anoxic shelf prior to the global onset of anoxia, suggests that these fluctuations were a fundamental feature of anoxia in the Cretaceous ocean. The observed redox cyclicity has major implications for the cycling of phosphorus, and hence the maintenance and longevity of OAEs. However, despite this significance, controls on the observed redox cyclicity are essentially unknown. Here, we utilize S isotope measurements (pyrite S and carbonate-associated S) from the deep sea and shelf settings to model oceanic sulphate concentrations across the redox transitions. Perhaps surprisingly, we find no evidence to suggest that ferruginous conditions arose due to extensive drawdown of seawater sulphate (as pyrite-S and organic-S) under euxinic conditions. Instead, S isotope systematics in the deep sea imply increased sulphate concentrations during ferruginous intervals. Based on these observations and other major element data, we infer that the redox cyclicity instead relates to orbitally-paced fluctuations in continental hydrology and weathering, linking the redox state of the global ocean to climate-driven processes on land. [1] März et al (2008) GCA, 72, 3703-3717.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 14 (2013): 5263–5285, doi:10.1002/2013GC004904.
    Description: Two commonly used proxies based on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs) are the TEX86 (TetraEther indeX of 86 carbon atoms) paleothermometer for sea surface temperature reconstructions and the BIT (Branched Isoprenoid Tetraether) index for reconstructing soil organic matter input to the ocean. An initial round-robin study of two sediment extracts, in which 15 laboratories participated, showed relatively consistent TEX86 values (reproducibility ±3–4°C when translated to temperature) but a large spread in BIT measurements (reproducibility ±0.41 on a scale of 0–1). Here we report results of a second round-robin study with 35 laboratories in which three sediments, one sediment extract, and two mixtures of pure, isolated GDGTs were analyzed. The results for TEX86 and BIT index showed improvement compared to the previous round-robin study. The reproducibility, indicating interlaboratory variation, of TEX86 values ranged from 1.3 to 3.0°C when translated to temperature. These results are similar to those of other temperature proxies used in paleoceanography. Comparison of the results obtained from one of the three sediments showed that TEX86 and BIT indices are not significantly affected by interlaboratory differences in sediment extraction techniques. BIT values of the sediments and extracts were at the extremes of the index with values close to 0 or 1, and showed good reproducibility (ranging from 0.013 to 0.042). However, the measured BIT values for the two GDGT mixtures, with known molar ratios of crenarchaeol and branched GDGTs, had intermediate BIT values and showed poor reproducibility and a large overestimation of the “true” (i.e., molar-based) BIT index. The latter is likely due to, among other factors, the higher mass spectrometric response of branched GDGTs compared to crenarchaeol, which also varies among mass spectrometers. Correction for this different mass spectrometric response showed a considerable improvement in the reproducibility of BIT index measurements among laboratories, as well as a substantially improved estimation of molar-based BIT values. This suggests that standard mixtures should be used in order to obtain consistent, and molar-based, BIT values.
    Description: S.S. thanks the Netherlands Organisation for Scientific Research (NWO) for financial support through a VICI grant and Jaap van der Meer for advice and support on the statistical analysis. A.P. thanks Susan Carter for laboratory assistance and NSF-OCE for funding. A.R.M. thanks Jordi Coello and N uria Moraleda for advice and support on the statistical analysis and Spanish Ministry for research and innovation (MICIIN) for funding. V.G. thanks Xavier Philippon and Carl Johnson for technical assistance. K.G. and M.W. thank the Australian Research Council and John de Laeter Centre for funding toward the LC-MS system, and ARC Fellowship awarded to K.G. C.L.Z. thanks the State Key Laboratory of Marine Geology and the Chinese ‘‘National Thousand Talents’’ program for supporting the LC-MS work performed at Tongji University.
    Description: 2014-06-20
    Keywords: TEX86 ; BIT ; GDGT ; Round robin
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/msword
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...