GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: Estuaries are highly dynamic systems that serve as nursery areas to fishes and are likely to vary in nursery function, mostly due to habitat quality and food availability. Mangroves are thought to be good nurseries as they enhance food availability and protection, improving growth and survival of juvenile fishes. Food quantity and quality may be reflected in nutritional condition, which may in turn be a useful proxy for growth and survival of larval fishes. This study compared the nutritional condition and growth rate of 793 late stage larvae of estuarine roundherring, Gilchristella aestuaria, by using RNA:DNA indices to indirectly compare the feeding environment among similar warm-temperate mangrove and non-mangrove estuaries in South Africa during January 2015 and 2016. Results indicated that G. aestuaria larvae had differing nutritional conditions within the sampling years and within the estuaries. The standardised RNA:DNA (sRD) as well as the RNA residual index values were higher within mangrove estuaries only in 2016. The instantaneous growth rates (Gi) of larvae in mangrove and non-mangrove estuaries were similar; however, post-flexion larvae were found to have a higher Gi and sRD in mangrove estuaries. Turbidity was the major factor influencing the nutritional condition of G. aestuaria larvae. Mangroves have been found to act as sediment sinks and thus may provide advantages that increase feeding success for post-flexion larvae; however, more is yet to be understood in terms of feeding environment dynamics and how habitat quality influences the survival of larval fishes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-05-28
    Description: Salinity strongly influences development and distribution of the sea star Asterias rubens. In Kiel Fjord, located in the western Baltic Sea, A. rubens is the only echinoderm species and one of the main benthic predators controlling blue mussel (Mytilus edulis) abundance. However, Kiel Fjord with an average salinity of about 15 is located close to the eastern distribution boundary of A. rubens in the Baltic Sea. In this study, we combined field and laboratory investigations to test whether the salinity of Kiel Fjord is high enough to enable successful development of A. rubens. Sea star eggs were fertilized in vitro, and development was monitored in the laboratory at four salinities (9, 12, 15 and 18) for 10 weeks. At a salinity of 9, development ceased prior to the blastula stage. At a salinity of 12, no larvae reached metamorphosis. At higher salinities, larvae developed normally and metamorphosed into juvenile sea stars. Abundances of A. rubens larvae and settled juveniles were also observed in Kiel Fjord and correlated to salinity values measured from March until June during 6 years (2005–2010). Results revealed high A. rubens settlement rates only in 2009, the year when salinity was the highest and least variable during the period of spawning and larval development. It appears that only years with high and stable salinities permit recruitment of A. rubens in Kiel Fjord. Projected desalination of the Baltic Sea could shift the distribution of A. rubens in the western Baltic Sea north-westwards and may lead to local extinction of a keystone species of the benthic ecosystem.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-13
    Description: The kinematics of swimming behavior of Atlantic herring larvae cultured under three pCO2 conditions (control - 370, medium - 1800, and high - 4200μatm) were extracted at 34days post-hatch (dph) from swim path recordings obtained using silhouette video photography. The swim paths were analyzed for move duration, speed and length, stop duration, and horizontal and vertical turn angles to determine the effects of elevated pCO2 on fish larval behavior. The swimming kinematics and occurrence of S-postures in Atlantic herring larvae that had survived to 34-dph were unaffected by extremely elevated levels of seawater pCO2, indicating that at least some larvae in the population are resilient to ocean acidification.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: The high mortality during fish early life stages is a major bottleneck in aquaculture. Therefore, the establishment of methods to prevent and control diseases, to ensure efficient growth and to reach maximal survival rates is mandatory to optimize the productivity. A promising solution can be the early activation of the immune system by administration of probiotics as nutritional supplements. In our study we assess the effect of the probiotic candidate Bacillus subtilis on the innate and adaptive immune response of juvenile European sea bass (Dicentrarchus labrax). Therefore, Artemia nauplii were used as live carriers to feed B. subtilis to 3-month-old sea bass over a period of 2 weeks. Subsequently, the juveniles were fed another week without administering B. subtilis in order to estimate the bacterial mucus-binding ability. During the course of the experiment, we evaluated direct effects on the cellular immune response by fluorescence-activated cell sorting analysis and on survival. As a next step we will determine profiles of immune gene expression. To estimate cellular stress, the expression level of metabolism- and stress-related genes will be measured. Furthermore, the RNA/DNA ratio as an indicator of growth will be analysed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-23
    Description: The European sprat (Sprattus sprattus) was a main target species of the German GLOBEC program that investigated the trophodynamic structure and function of the Baltic and North Seas under the influence of physical forcing. This review summarizes literature on the ecophysiology of sprat with an emphasis on describing how environmental factors influence the life-history strategy of this small pelagic fish. Ontogenetic changes in feeding and growth, and the impacts of abiotic and biotic factors on vital rates are discussed with particular emphasis on the role of temperature as a constraint to life-history scheduling of this species in the Baltic Sea. A combination of field and laboratory data suggests that optimal thermal windows for growth and survival change during early life and are wider for eggs (5–17 °C) than in young (8- to 12-mm) early feeding larvae (5–12 °C). As larvae become able to successfully capture larger prey, thermal windows expand to include warmer waters. For example, 12- to 16-mm larvae can grow well at 16 °C and larger, transitional-larvae and early juveniles display the highest rates of feeding and growth at ~18–22 °C. Gaps in knowledge are identified including the need for additional laboratory studies on the physiology and behavior of larvae (studies that will be particularly critical for biophysical modeling activities) and research addressing the role of overwinter survival as a factor shaping phenology and setting limits on the productivity of this species in areas located at the northern limits of its latitudinal range (such as the Baltic Sea). Based on stage- and temperature-specific mortality and growth potential of early life stages, our analysis suggests that young-of-the year sprat would benefit from inhabiting warmer, near-shore environments rather than the deeper-water spawning grounds such as the Bornholm Basin (central Baltic Sea). Utilization of warmer, nearshore waters (or a general increase in Baltic Sea temperatures) is expected to accelerate growth rates but also enhance the possibility for density-dependent regulation of recruitment (e.g., top-down control of zooplankton resources) acting during the late-larval and juvenile stages, particularly when sprat stocks are at high levels.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-10
    Description: Some studies have demonstrated that elevated CO2 concentrations in ocean waters negatively impact metabolism and development of marine fish. Particularly, early developmental stages are probably more susceptible to ocean acidification due to insufficient regulations of their acid-base balance. Transgenerational acclimation can be an important mechanism to mediate impacts of increased CO2 on marine species, yet very little is known about the potential of parental effects in teleosts. Therefore, transgenerational effects were investigated on life history in juvenile three-spined sticklebacks Gasterosteus aculeatus by acclimating parents (collected in April 2012, 55A degrees 03'N, 8A degrees 44'E) and offspring to ambient (similar to 400 A mu atm) and elevated (similar to 1,000 A mu atm) CO2 levels and measured parental fecundity as well as offspring survival, growth and otolith characteristics. Exposure to elevated CO2 concentrations led to an increase in clutch size in adults as well as increased juvenile survival and growth rates between 60 and 90 days post-hatch and enlarged otolith areas compared with fish from ambient CO2 concentrations. Moreover, transgenerational effects were observed in reduced survival and body size 30 days post-hatch as well as in enlarged otoliths at the end of the experiment, when fathers or both parents were acclimated to the high-CO2 environment. These results may suggest that elevated CO2 concentrations had rather positive effects on life-history traits of three-spined sticklebacks, but that parental acclimation can modify these effects without improving offspring fitness. Although the mechanistic basis of such transgenerational acclimation remains unclear, selective gradients within generations seem to determine the direction of transgenerational effects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-29
    Description: The accumulation of carbon dioxide in the atmosphere will lower the pH in ocean waters, a process termed ocean acidification (OA). Despite its potentially detrimental effects on calcifying organisms, experimental studies on the possible impacts on fish remain scarce. While adults will most likely remain relatively unaffected by changes in seawater pH, early life-history stages are potentially more sensitive, due to the lack of gills with specialized ion-regulatory mechanisms. We tested the effects of OA on growth and development of embryos and larvae of eastern Baltic cod, the commercially most important fish stock in the Baltic Sea. Cod were reared from newly fertilized eggs to early non-feeding larvae in 5 different experiments looking at a range of response variables to OA, as well as the combined effect of CO2 and temperature. No effect on hatching, survival, development, and otolith size was found at any stage in the development of Baltic cod. Field data show that in the Bornholm Basin, the main spawning site of eastern Baltic cod, in situ levels of pCO2 are already at levels of 1,100 μatm with a pH of 7.2, mainly due to high eutrophication supporting microbial activity and permanent stratification with little water exchange. Our data show that the eggs and early larval stages of Baltic cod seem to be robust to even high levels of OA (3,200 μatm), indicating an adaptational response to CO2.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-09
    Description: Larval fish growth and survival depends not only on prey quantity, but also on prey quality. To investigate effects of prey fatty acid concentration on larval herring growth, we collected different prey organisms and larval herring (Clupea harengus L.) in the Kiel Canal during the spring season of 2009. Along with biotic background data, we analysed fatty acids both in prey organisms and in the larvae and used biochemically derived growth rates of the larvae as the response variable. Larval herring reached their highest RNA/DNA derived growth rates only at high docosahexaenoic acid (DHA) concentration. When the ratio of copepodids to lesser quality cirriped nauplii was low, larval growth and larval DHA concentration were both significantly negatively affected. This was true even as prey abundance was increasing. This finding indicates that even in mixed, natural feeding conditions, growth variations are associated with DHA availability in larval fish.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-07-13
    Description: Gaining reliable estimates of how long fish early life stages can survive without feeding and how starvation rate and time until death are influenced by body size, temperature and species is critical to understanding processes controlling mortality in the sea. The present study is an across-species analysis of starvation-induced changes in biochemical condition in early life stages of nine marine and freshwater fishes. Data were compiled on changes in body size (dry weight, DW) and biochemical condition (standardized RNA–DNA ratio, sRD) throughout the course of starvation of yolk-sac and feeding larvae and juveniles in the laboratory. In all cases, the mean biochemical condition of groups decreased exponentially with starvation time, regardless of initial condition and endogenous yolk reserves. A starvation rate for individuals was estimated from discrete 75th percentiles of sampled populations versus time (degree-days, Dd). The 10th percentile of sRD successfully approximated the lowest, life-stage-specific biochemical condition (the edge of death). Temperature could explain 59% of the variability in time to death whereas DW had no effect. Species and life-stage-specific differences in starvation parameters suggest selective adaptation to food deprivation. Previously published, interspecific functions predicting the relationship between growth rate and sRD in feeding fish larvae do not apply to individuals experiencing prolonged food deprivation. Starvation rate, edge of death, and time to death are viable proxies for the physiological processes under food deprivation of individual fish pre-recruits in the laboratory and provide useful metrics for research on the role of starvation in the sea. Highlights ► Biochemical condition (RNA–DNA ratio) decreases exponentially during starvation. ► Starvation parameters of individuals can be derived from data collected on groups. ► Physiological rates of starvation compare well across a broad range of temperatures. ► Species and life stages specific starvation parameters indicate selective adaptation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: Baltic sprat (Sprattus sprattus balticus S.) is a key species in the pelagic ecosystem of the Baltic Sea. Most stocks of small pelagic species are characterized by natural, fishery-independent fluctuations, which make it difficult to predict stock development. Baltic sprat recruitment is highly variable, which can partly be related to climate-driven variability in hydrographic conditions. Results from experimental studies and field observations demonstrate that a number of important life history traits of sprat are affected by temperature, especially the survival and growth of early life stages. Projected climate-driven warming may impact important processes affecting various life stages of sprat, from survival and development during the egg and larval phases to the reproductive output of adults. This study presents a stage-based matrix model approach to simulate sprat population dynamics in relation to different climate change scenarios. Data obtained from experimental studies and field observations were used to estimate and incorporate stage-specific growth and survival rates into the model. Model-based estimates of population growth rate were affected most by changes in the transition probability of the feeding larval stage at all temperatures (+0, +2, +4, +6 °C). The maximum increase in population growth rate was expected when ambient temperature was elevated by 4 °C. Coupling our stage-based model and more complex, biophysical individual-based models may reveal the processes driving these expected climate-driven changes in Baltic Sea sprat population dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...