GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ELSEVIER SCIENCE BV  (3)
  • TAYLOR & FRANCIS LTD  (3)
  • 1
    Publication Date: 2018-01-16
    Description: Azaspiracids (AZA) are a group of food poisoning phycotoxins that are known to accumulate in shellfish. They are produced by some species of the planktonic dinophycean taxon Amphidomataceae. Azaspiracids have been first discovered in Ireland but are now reported in shellfish from numerous global sites thus showing a wide distribution. In shellfish samples collected in 2009 near Huelva (Spain),AZA was also found along the Andalusian Atlantic coast for the first time. Analysis using LC–MS/MS revealed the presence of two different AZA analogues in different bivalve shellfish species (Chamelea gallina, Cerastoderma edule, Donax trunculus, and Solen vagina). In a number of samples, AZA levels exceeded the EU regulatory level of 160 mg AZA-1 eq. kg�1 (reaching maximum levels of 〉500 mg AZA- 1 eq. kg�1 in Chamelea gallina and 〉250 mg AZA-1 eq. kg�1 in Donax trunculus) causing closures of some local shellfish production areas. One dinophyte strain established from the local plankton during the AZA contamination period and determined as Amphidoma languida was in fact toxigenic, and its AZA profile disclosed it as the causative species: it contained AZA-2 as the main compound and the new compound AZA-43 initially detected in the shellfish. AZA-43 had the same mass as AZA-3, but produced different collision induced dissociation (CID) spectra. High resolution mass spectrometric easurements indicated that there is an unsaturation in the H, I ring system of AZA-43 distinguishing it from the classical AZA such as AZA-1, -2, and -3. Furthermore, the Spanish strain was different from the previously reported AZA profile of the species that consist of AZA-38 and AZ-39. In molecular phylogenetics, the Andalusian strain formed a monophyletic group together with other strains of Am. languida, but ITS sequences data revealed surprisingly high intragenomic variability. The first Andalusian case of AZA contamination of shellfish above the EU regulatory limit reported here clearly revealed the risk of azaspiracid poisoning (AZP) for this area and also for the Atlantic coast of Iberia and North Africa. The present study underlines the need for continuous monitoring of AZA and the organisms producing such toxins.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    TAYLOR & FRANCIS LTD
    In:  EPIC3European Journal of Phycology, TAYLOR & FRANCIS LTD, 53(1), pp. 14-28, ISSN: 0967-0262
    Publication Date: 2019-02-07
    Description: Amphidoma is an old though poorly studied thecate dinophyte that has attracted attention recently as a potential producerof azaspiracids (AZA), a group of lipophilic phycotoxins. A new species, Amphidoma parvula, sp. nov. is described from theSouth Atlantic shelf of Argentina. With a Kofoidean thecal plate pattern Po, cp, X, 6′, 6′′, 6C, 5S, 6′′′, 2′′′′, the cultivatedstrain H-1E9 (from which the type material of Am. parvula, sp. nov. was prepared) shared the characteristic platearrangement of Amphidoma each with six apical, precingular and postcingular plates. Amphidoma parvula, sp. nov. differs from other species of Amphidoma by a characteristic combination of small size (10.7–13.6 μm in length), ovoid shape, high length ratio between epitheca and hypotheca, and small length ratio between apical and precingular plates. Other morphological details, such as the number and arrangement of sulcal plates and the fine structure of the apical pore complex support the close relationship between Amphidoma and the other known genus of Amphidomataceae, Azadinium. However, Am. parvula, sp. nov. lacks a ventral pore, a characteristically structured pore found in all contemporary electron microscopy studies of Amphidoma and Azadinium. As inferred from liquid chromatography coupled with tandem mass spectrometry, Am. parvula, sp. nov. did not produce AZA in measurable amounts. Molecular phylogenetics confirmed the systematic placement of Am. parvula, sp. nov. in Amphidoma (as sister species of Amphidoma languida) and the Amphidomataceae. The results of this study have improved the knowledge of Amphidomataceae biodiversity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-05-22
    Description: Azaspiracids (AZA) are the most recently discovered group of lipophilic marine biotoxins of microalgal origin, and associated with human incidents of shellfish poisoning. They are produced by a few species of Amphidomataceae, but diversity and occurrence of the small-sized dinophytes remain poorly explored for many regions of the world. In order to analyze the presence and importance of Amphidomataceae in a highly productive area of Argentinean coastal waters (El Rincón area, SW Atlantic), a scientific cruise was performed in 2015 to sample the early spring bloom. In a multi-method approach, light microscopy was combined with realtime PCR molecular detection of Amphidomataceae, with chemical analysis of AZA, and with the establishment and characterization of amphidomatacean strains. Both light microscopy and PCR revealed that Amphidomataceae were widely present in spring plankton communities along the El Rincón area. They were particularly abundant offshore at the shelf front, reaching peak densities of 2.8×105 cells L−1, but no AZA were detected in field samples. In total, 31 new strains were determined as Az. dalianense and Az. spinosum, respectively. All Az. dalianense were non-toxigenic and shared the same rRNA sequences. The large majority of the new Az. spinosum strains revealed for the first time the presence of a non-toxigenic ribotype of this species, which is otherwise the most important AZA producer in European waters. One of the new Az. spinosum strains, with a particular slender shape and some other morphological peculiarities, clustered with toxigenic strains of Az. spinosum from Norway and, exceptionally for the species, produced only AZA-2 but not AZA-1. Results indicate a wide diversity within Az. spinosum, both in terms of sequence data and toxin profiles, which also will affect the qualitative and quantitative performance of the specific qPCR assay for this species. Overall, the new data provide a more differentiated perspective of diversity, toxin productivity and occurrence of Amphidomataceae in a poorly explored region of the global ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    TAYLOR & FRANCIS LTD
    In:  EPIC3European Journal of Phycology, TAYLOR & FRANCIS LTD, 54(3), pp. 417-431, ISSN: 0967-0262
    Publication Date: 2020-08-25
    Description: The Prorocentrales are a unique group of dinophytes based on several apomorphic traits, but species delimitation is challenging within the group. The type species of Prorocentrum, namely P. micans, cannot be determined unambiguously, as important characters are not preserved in the original material collected in the first half of the 19th century. Water samples were taken at the type locality of P. micans in the Baltic Sea off Kiel (Germany) and strains with a morphology consistent with the protologue were established. An in-depth morphological analysis was performed, illustrating minute traits such as the periflagellar platelets and three different types of thecal pores. rRNA sequence data allowed for molecular characterization of the species. The newly collected material of P. micans was used for epitypification with the result that the type species of Prorocentrum can now be determined unambiguously.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-03-13
    Description: Gonyaulacales include a considerable number of harmful algae and to understand their origin and rise, knowledge of the evolutionary relationships is necessary. Many scientific names of protists introduced prior to the availability of DNA analytics are ambiguous and impede communication about biological species and their traits in the microbial world. Strains of Lingulodinium polyedra were established from its type locality in the Kiel Fjord (Germany) to clarify its taxonomy. Moreover, the phylogeny of Gonyaulacales was inferred based on 329 rRNA sequence accessions compiled in a curated sequence data base, with as much as possible type material equivalents included. Gonyaulacales were monophyletic and segregated into seven lineages at high systematic level, of which †Lingulodiniaceae constituted the first branch of the Gonyaulacales. Their type species had a plate formula APC (Po, X, cp), 3′ , 3a, 6′ ′ 6c, 6s, 6′ ′ ′ , 2′ ′ ′ ′ and is taxonomically clarified by epitypification. Recommendations for this important taxonomic tool are provided, with a focus on microorganisms. Most gonyaulacalean taxa established at generic rank are monophyletic, with Alexandrium, Coolia and Gonyaulax as notable exceptions. From an evolutionary perspective, gonyaulacalean dinophytes with quinqueform hypotheca are monophyletic and derive from a paraphyletic group showing the sexiform configuration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-04-27
    Description: The Prorocentrales are a unique group of dinophytes based on several apomorphic traits, but species delimitation is challenging within the group. Prorocentrum triestinum was described by Josef Schiller in 1918 as an important bloomforming species from Trieste (Mediterranean, Adriatic Sea) with a conspicuous asymmetric outline and a small, asymmetrically located subapical spine. All subsequent records under this name fail to conform to Schiller’s original description. These inconsistencies have their origin in John Dodge’s 1975 revision of Prorocentrum, which placed Prorocentrum redfieldii, a more symmetrical, slender species with a long apical spine, into synonymy under P. triestinum. To clarify this confusion, we collected samples at the type locality of P. triestinum in Trieste and established a strain that is morphologically consistent with the protologue and suitable for use in epitypification. Morphology and rRNA sequence data of this strain were compared with four new strains identified as P. redfieldii from the Mediterranean Sea and the North Atlantic Ocean. Cells of P. triestinum had an asymmetric outline in lateral view and a small, dorso-subapical spine. These features, which are readily resolved by light microscopy, were distinct from those of the nearly symmetrical and slender cells of P. redfieldii, which had a long, apically located spine. The species are nevertheless closely related and share an identical architecture of the periflagellar area with a distinctive, largely reduced accessory pore together with a very small platelet 7. This apomorphy clearly differentiates both species from other species of Prorocentrum. Both species differ in their primary rRNA sequences, and ITS and LSU sequence differences will enable them to be distinguished in future meta-barcoding studies. The present study demonstrates that P. triestinum and P. redfieldii are distinct species and thus contributes to a reliable biodiversity assessment of Prorocentrum.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...