GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus Publications on behalf of the European Geosciences Union  (1)
  • Elsevier BV  (1)
  • 1
    facet.materialart.
    Unknown
    Copernicus Publications on behalf of the European Geosciences Union
    In:  EPIC3Biogeosciences Discussions, Copernicus Publications on behalf of the European Geosciences Union, 12, pp. 6445-6488
    Publication Date: 2017-01-30
    Description: The outer Western Crimean Shelf of the Black Sea is a natural laboratory to investigate effects of stable oxic vs. varying hypoxic conditions on seafloor biogeochemical processes and benthic community structure. Bottom water oxygen concentrations varied between normoxic (175 μmol O2 L−1) and hypoxic (〈 63 μmol O2 L−1) or even anoxic/sulfidic conditions within a few kilometres distance. Variations in oxygen concentrations between 160 and 10 μmol L−1 even occurred within hours close to the chemocline at 134 m water depth. Total oxygen uptake, including diffusive as well as fauna-mediated oxygen consumption, decreased from 〉 15 mmol m−2 d−1 in the oxic zone to 〈 9 mmol m−2 d−1 in the hypoxic zone, correlating with changes in macrobenthos composition. Benthic diffusive oxygen uptake rates, comprising microbial respiration plus reoxidation of inorganic products, were around 4.5 mmol m−2 d−1, but declined to 1.3 mmol m−2 d−1 at oxygen concentrations below 20 μmol L−1. Measurements and modelling of pore water profiles indicated that reoxidation of reduced compounds played only a minor role in the diffusive oxygen uptake, leaving the major fraction to aerobic degradation of organic carbon. Remineralization efficiency decreased from 100% in the oxic zone, to 50% in the oxic-hypoxic, to 10% in the hypoxic-anoxic zone. Overall the faunal remineralization rate was more important, but also more influenced by fluctuating oxygen concentrations than microbial and geochemical oxidation processes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier BV
    In:  EPIC3The Science of The Total Environment, Elsevier BV, 865, pp. 161168-161168, ISSN: 0048-9697
    Publication Date: 2023-06-21
    Description: Permeable sandy sediments cover 50-60% of the global continental shelf and are important bioreactors that regulate organic matter (OM) turnover and nutrient cycling in the coastal ocean. In sands, the dynamic porewater advection can cause rapid mass transfer and variable redox conditions, thus affecting OM remineralization pathways as well as the recycling of iron and phosphorus. In this study, North Sea sands were incubated in flow-through reactors (FTRs) to investigate biogeochemical processes under porewater advection and changing redox conditions. We found that the average rate of anaerobic OM remineralization was 12 times lower than the aerobic pathway, and Fe(III) oxyhydroxides were found as the major electron acceptors during 34 days of anoxic incubation. Abundant reduced Fe in the solid phase (expressed as Fe(II)) was measured before extensive Fe2+ release into porewater, and most of the reduced Fe (~96%) remained in the solid phase throughout the anoxic incubation. Fe(II) retained in the solid phase, either through the formation of authigenic Fe(II)-bearing minerals or adsorption, was easily re-oxidized upon exposure to O2 . Excessive P release (apart from OM remineralization) started at the beginning of the anoxic incubation and accelerated after the release of Fe2+ with a constant P/Fe2+ ratio of 0.26. After 34 days of anoxic incubation, porewater was re-oxygenated and 〉99% of released P was coprecipitated through Fe2+ oxidation (so-called “Fe2+ curtain”). Our results demonstrate that Fe(III)/Fe(II) in the solid phase can serve as relatively immobile and rechargeable “redox battery” under dynamic porewater advection. Due to frequent oscillation of redox conditions, the Fe “redox battery” is characteristic for permeable sediments and plays an important role in coastal OM turnover. We also suggest that P liberated before Fe2+ release can escape the “Fe2+ curtain” in porewater advection, thus potentially increasing net benthic P efflux from permeable sediments under variable redox conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...