GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Copernicus Publications on behalf of the European Geosciences Union  (1)
  • Elsevier B.V.  (1)
  • Springer Nature  (1)
Document type
  • Articles  (3)
Publisher
Years
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Climate of the Past 9 (2013): 1481-1493, doi:10.5194/cp-9-1481-2013.
    Description: We present a Bayesian model for estimating the parameters of the VS-Lite forward model of tree-ring width for a particular chronology and its local climatology. The scheme also provides information about the uncertainty of the parameter estimates, as well as the model error in representing the observed proxy time series. By inferring VS-Lite's parameters independently for synthetically generated ring-width series at several hundred sites across the United States, we show that the algorithm is skillful. We also infer optimal parameter values for modeling observed ring-width data at the same network of sites. The estimated parameter values covary in physical space, and their locations in multidimensional parameter space provide insight into the dominant climatic controls on modeled tree-ring growth at each site as well as the stability of those controls. The estimation procedure is useful for forward and inverse modeling studies using VS-Lite to quantify the full range of model uncertainty stemming from its parameterization.
    Description: This work was supported in part by an American Association of University Women Dissertation Fellowship and grants NSF ATM-0724802, NSF ATM-0902715, NSF DMS- 1204892, and NOAA NA060OAR4310115.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/zip
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Quaternary Science Reviews 76 (2013): 16-28, doi:10.1016/j.quascirev.2013.05.024.
    Description: A proxy system model may be defined as the complete set of forward and mechanistic processes by which the response of a sensor to environmental forcing is recorded and subsequently observed in a material archive. Proxy system modeling complements and sharpens signal interpretations based solely on statistical analyses and transformations; provides the basis for observing network optimization, hypothesis testing, and data-model comparisons for uncertainty estimation; and may be incorporated as weak but mechanistically-plausible constraints into paleoclimatic reconstruction algorithms. Following a review illustrating these applications, we recommend future research pathways, including development of intermediate proxy system models for important sensors, archives, and observations; linking proxy system models to climate system models; hypothesis development and evaluation; more realistic multi-archive, multi-observation network design; examination of proxy system behavior under extreme conditions; and generalized modeling of the total uncertainty in paleoclimate reconstructions derived from paleo-observations.
    Description: MNE and DMT were funded by NOAA/C2D2 grant NA10OAR4310115; SETW gratefully acknowledges support from an American Association of UniversityWomen Dissertation Fellowship. Work cited in this review was supported by NSF grants 0349356, 0724802 and 0902715, NOAA grants NA06OAR4310115 and NA08OAR4310682, and the University of Arizona’s Department of Geosciences and Institute of the Environment.
    Keywords: Forward modeling ; Observational network optimization ; Data-model comparison ; Hypothesis evaluation ; Reconstruction ; Uncertainty modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-22
    Description: Exceptional drought events, known as megadroughts, have occurred on every continent outside Antarctica over the past ~2,000 years, causing major ecological and societal disturbances. In this Review, we discuss shared causes and features of Common Era (Year 1–present) and future megadroughts. Decadal variations in sea surface temperatures are the primary driver of megadroughts, with secondary contributions from radiative forcing and land–atmosphere interactions. Anthropogenic climate change has intensified ongoing megadroughts in south-western North America and across Chile and Argentina. Future megadroughts will be substantially warmer than past events, with this warming driving projected increases in megadrought risk and severity across many regions, including western North America, Central America, Europe and the Mediterranean, extratropical South America, and Australia. However, several knowledge gaps currently undermine confidence in understanding past and future megadroughts. These gaps include a paucity of high-resolution palaeoclimate information over Africa, tropical South America and other regions; incomplete representations of internal variability and land surface processes in climate models; and the undetermined capacity of water-resource management systems to mitigate megadrought impacts. Addressing these deficiencies will be crucial for increasing confidence in projections of future megadrought risk and for resiliency planning.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...