GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 119 (1981), S. 1107-1115 
    ISSN: 1420-9136
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The deep seismic sounding project ‘Blue Norma’ was carried out in the summer of 1977 in northern Scandinavia in order to investigate the deep structure of the Norwegian continental margin and the Caledonian mountain chain. During the measurements, by chance the core phase PKIKP of an earthquake at the New Hebrides was recorded with 30 seismic field stations along a profile through the central Caledonides. The results of the refraction seismic data, as obtained by a ray-tracing method, are presented and compared to the interpretation of the relative residuals of the PKIKP travel times. From both data sets a continentward down-dipping crust-mantle boundary is evaluated. From the interpretation of the refraction seismic measurements a crustal thickness of 32 km below the coastline and 42 km below the central mountain chain is obtained. The increase of the crustal thickness derived by the inversion of the travel-time residuals along this line amounts only to 6 km. This considerable discrepancy can only be explained by an eastward increasing seismic velocity in the mantle.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Continuous surface cores of cold-seep carbonates were recovered offshore Pacific Nicaragua and Costa Rica from 800 to 1,500-m water depths (Meteor 66/3) in order to decipher their evolution and methane enriched fluid emanation in contrasting geological settings. Cores from the mounds Iguana, Perezoso, Baula V and from the Jaco Scarp escarpment were used for a multi-method approach. For both settings aragonite was revealed as dominant authigenic carbonate phase in vein fillings and matrix cementation, followed by Mg-calcite as second most abundant. This common precipitation process of CaCO3 polymorphs could be ascribed as indirectly driven by chemical changes of the advecting pore water due to anaerobic oxidation of methane. A more direct influence of seep-related microbial activity on the authigenic mineral assemblage in both settings is probably reflected by the observed minor amounts of dolomite and a dolomite-like CaMg carbonate (MgCO3 ~ 42 %). δ13C data of Jaco Scarp samples are significantly lower (−43 to −56 ‰ PDB) than for mound samples (−22 to −36 ‰ PDB), indicating differences in fluid composition and origin. Noteworthy, δ18O values of Scarp samples correlate most closely with the ocean signature at their time of formation. Documenting the archive potential, a high resolution case study of a mound core implies at least 40 changes in fluid supply within a time interval of approximately 14 ky. As most striking difference, the age data indicate a late-stage downward-progressing cementation front for all three mound cap structures (approx. 2–5 cm/ky), but a significantly faster upward carbonate buildup in the bulging sediments on top of the scarp environment (approx. 120 cm/ky). The latter data set leads to the hypothesis of chemoherm carbonate emplacement in accord with reported sedimentation rates until decompression of the advective fluid system, probably caused by the Jaco Scarp landslide and dating this to approximately 13,000 years ago.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer
    In:  In: Submarine Mass Movements and their Consequences. , ed. by Yamada, Y. Advances in Natural and Technological Hazards Research, 31 . Springer, Dordrecht, pp. 379-390. ISBN 978-94-007-2161-6
    Publication Date: 2019-09-23
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: The continental shelf and slope of southern Central Chile have been subject to a number of international as well as Chilean research campaigns over the last 30 years. This work summarizes the geologic setting of the southern Central Chilean Continental shelf (33°S–43°S) using recently published geophysical, seismological, sedimentological and bio-geochemical data. Additionally, unpublished data such as reflection seismic profiles, swath bathymetry and observations on biota that allow further insights into the evolution of this continental platform are integrated. The outcome is an overview of the current knowledge about the geology of the southern Central Chilean shelf and upper slope. We observe both patches of reduced as well as high recent sedimentation on the shelf and upper slope, due to local redistribution of fluvial input, mainly governed by bottom currents and submarine canyons and highly productive upwelling zones. Shelf basins show highly variable thickness of Oligocene-Quaternary sedimentary units that are dissected by the marine continuations of upper plate faults known from land. Seismic velocity studies indicate that a paleo-accretionary complex that is sandwiched between the present, relatively small active accretionary prism and the continental crust forms the bulk of the continental margin of southern Central Chile.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-11-14
    Description: Earthquake history shows that the Sunda subduction zone of the Indonesian margin produces great earthquakes offshore Sumatra, whereas earthquakes of comparable magnitude are lacking offshore Java and the Lesser Sunda islands. Morphological structures from multibeam bathymetric data across the forearc relate with the extent of the seismogenic zone (SZ). Off Java and the Lesser Sunda islands the Indo-Australian plate subducts almost normal underneath the oceanic plate of the Indonesian archipelago. Landward of the trench, the outer wedge of the slope break is ~50 km uniformly wide with uniform bathymetric gradients. The slope of the outer wedge is locally cut by one/two steeper ridges of ~5 km extent. The sharp slope break corresponds to the updip limit of the SZ, which is also associated with the seawardmost part of the outer arc high. Landward of the slope break we find narrow, uniform outer arc ridges. The landward termination of these ridges coincides with the downdip limit of the SZ. The intersection of the shallow upper plate mantle with the subduction thrust fault marks the downdip limit of the SZ beneath the forearc. Off Sumatra the Indo-Australian plate subducts obliquely underneath the continental part of the Indonesian Sunda margin. Landward of the trench, the outer wedge varies, being mostly ~70 km wide, in some areas narrowing to 50 km width. The lower slope bathymetric gradients are steep. The outer wedge slope is made up of several steeper ridges of ~5 km extent. The slope break is only locally sharp, and corresponds to the updip limit of the SZ. The outer arc ridges off Sumatra are, in comparison with the forearc structures off Java and the Lesser Sunda islands, wider and partly elevated above sea level forming the Mentawai forearc islands. The downdip limit of the SZ coincides with the intersection of a deeper upper plate mantle with the subduction thrust fault beneath the forearc. Sunda Strait marks a transition zone between the Sumatra and Java margins. Seafloor morphology enables the identification of the seismogenic zone (SZ) across the entire Sunda margin. The SZ is uniformly wide for the Sumatra margin and narrows off Sunda Strait. Sunda Strait is the transition between the Sumatra margin and the uniformly narrow extent of the SZ of the Java/Lesser Sunda margin. Comparing the Java and Lesser Sunda islands with the Sumatra margin we find the differences along the Sunda margin, especially the wider extent of the SZ off Sumatra, producing larger earthquakes, to result from the combination of various causes: The sediment income on the oceanic incoming plate and the subduction direction; we attribute a major role to the continental/oceanic upper plate nature of Sumatra/Java influencing the composition and deformation style along the forearc and subduction fault. Off Sumatra the SZ is up to more than twice as wide as off Java/Lesser Sunda islands, enlarging the unstable regime off Sumatra and thus the risk of sudden stress release in a great earthquake.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-06-01
    Description: Three destructive earthquakes along the Alaska subduction zone sourced transoceanic tsunamis during the past 70 years. Since it is reasoned that past rupture areas might again source tsunamis in the future, we studied potential asperities and barriers in the subduction zone by examining Quaternary Gulf of Alaska plate history, geophysical data, and morphology. We relate the aftershock areas to subducting lower plate relief and dissimilar materials in the seismogenic zone in the 1964 Kodiak and adjacent 1938 Semidi Islands earthquake segments. In the 1946 Unimak earthquake segment, the exposed lower plate seafloor lacks major relief that might organize great earthquake rupture. However, the upper plate contains a deep transverse-trending basin and basement ridges associated with the Eocene continental Alaska convergent margin transition to the Aleutian island arc. These upper plate features are sufficiently large to have affected rupture propagation. In addition, massive slope failure in the Unimak area may explain the local 42-m-high 1946 tsunami runup. Although Quaternary geologic and tectonic processes included accretion to form a frontal prism, the study of seismic images, samples, and continental slope physiography shows a previous history of tectonic erosion. Implied asperities and barriers in the seismogenic zone could organize future great earthquake rupture.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...