GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus Publications  (3)
  • College of Oceanography, Hohai University  (2)
  • CLIVAR  (1)
  • 1
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Geoscientific Model Development, Copernicus Publications, 12(7), pp. 2635-2656, ISSN: 1991-9603
    Publication Date: 2019-08-19
    Description: Models from phase 5 of the Coupled Model Inter-comparison Project (CMIP5) show substantial biases in the deep ocean that are larger than the level of natural variability and the response to enhanced greenhouse gas concentrations. Here, we analyze the influence of horizontal resolution in a hierarchy of five multi-resolution simulations with the AWI Climate Model (AWI-CM), the climate model used at the Al-fred Wegener Institute, Helmholtz Centre for Polar and Ma-rine Research, which employs a sea ice–ocean model com-ponent formulated on unstructured meshes. The ocean grid sizes considered range from a nominal resolution of ∼ 1◦ (CMIP5 type) up to locally eddy resolving. We show that increasing ocean resolution locally to resolve ocean eddies leads to reductions in deep ocean biases, although these im-provements are not strictly monotonic for the five different ocean grids. A detailed diagnosis of the simulations allows to identify the origins of the biases. We find that two key re-gions at the surface are responsible for the development of the deep bias in the Atlantic Ocean: the northeastern North Atlantic and the region adjacent to the Strait of Gibraltar. Furthermore, the Southern Ocean density structure is equally improved with locally explicitly resolved eddies compared to parameterized eddies. Part of the bias reduction can be traced back towards improved surface biases over outcrop-ping regions, which are in contact with deeper ocean layers along isopycnal surfaces. Our prototype simulations provide guidance for the optimal choice of ocean grids for AWI-CM to be used in the final runs for phase 6 of CMIP (CMIP6) and for the related flagship simulations in the High Resolution Model Intercomparison Project (HighResMIP). Quite remarkably, retaining resolution only in areas of high eddy activity along with excellent scalability characteristics of the unstructured-mesh sea ice–ocean model enables us to per-form the multi-centennial climate simulations needed in a CMIP context at (locally) eddy-resolving resolution with a throughput of 5–6 simulated years per day.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Earth System Dynamics, Copernicus Publications, 11(4), pp. 1153-1194, ISSN: 2190-4979
    Publication Date: 2021-02-01
    Description: Abstract. Various observational estimates indicate growing mass loss at Antarctica's margins as well as heavier precipitation across the continent. Simulated future projections reveal that heavier precipitation, falling on Antarctica, may counteract amplified iceberg discharge and increased basal melting of floating ice shelves driven by a warming ocean. Here, we test how the ansatz (implementation in a mathematical framework) of the precipitation boundary condition shapes Antarctica's sea level contribution in an ensemble of ice sheet simulations. We test two precipitation conditions: we either apply the precipitation anomalies from CMIP5 models directly or scale the precipitation by the air temperature anomalies from the CMIP5 models. In the scaling approach, it is common to use a relative precipitation increment per degree warming as an invariant scaling constant. We use future climate projections from nine CMIP5 models, ranging from strong mitigation efforts to business-as-usual scenarios, to perform simulations from 1850 to 5000. We take advantage of individual climate projections by exploiting their full temporal and spatial structure. The CMIP5 projections beyond 2100 are prolonged with reiterated forcing that includes decadal variability; hence, our study may underestimate ice loss after 2100. In contrast to various former studies that apply an evolving temporal forcing that is spatially averaged across the entire Antarctic Ice Sheet, our simulations consider the spatial structure in the forcing stemming from various climate patterns. This fundamental difference reproduces regions of decreasing precipitation despite general warming. Regardless of the boundary and forcing conditions applied, our ensemble study suggests that some areas, such as the glaciers from the West Antarctic Ice Sheet draining into the Amundsen Sea, will lose ice in the future. In general, the simulated ice sheet thickness grows along the coast, where incoming storms deliver topographically controlled precipitation. In this region, the ice thickness differences are largest between the applied precipitation methods. On average, Antarctica shrinks for all future scenarios if the air temperature anomalies scale the precipitation. In contrast, Antarctica gains mass in our simulations if we apply the simulated precipitation anomalies directly. The analysis reveals that the mean scaling inferred from climate models is larger than the commonly used values deduced from ice cores; moreover, it varies spatially: the highest scaling is across the East Antarctic Ice Sheet, and the lowest scaling is around the Siple Coast, east of the Ross Ice Shelf. The discrepancies in response to both precipitation ansatzes illustrate the principal uncertainty in projections of Antarctica's sea level contribution.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    CLIVAR
    In:  EPIC3CLIVAR Open Science Conference: Charting the course for climate and ocean research, Qingdao, China, 2016-09-18-2016-09-25Qingdao, China, CLIVAR
    Publication Date: 2017-01-25
    Description: Ocean model biases such as the North West corner cold bias connected to the location of the Gulf Stream path, the warm bias in upwelling zones, the warm bias in the Southern Ocean, and model drift like the deep ocean warm bias which tends to peak in around 800 to 1000 m depth in the Atlantic Ocean are issues common among state-of-the-art ocean models. These issues are often amplified when the ocean model is coupled to an atmosphere model to perform climate simulations. Furthermore, unrealistic freezing of the Labrador Sea is an issue in various climate models. With the unstructured mesh approach in our Finite Element Sea ice Ocean Model (FESOM) we are able to systematically investigate the benefits of local refinement of the ocean model grid both in an uncoupled set-up (sea-ice ocean only) as well as in a fully coupled climate model (atmosphere- land-sea ice-ocean). While the horizontal ocean model resolution is 25 km on average in the finer grids, we refine the grids in some key areas to up to 5 km. Therefore we can explicitly resolve ocean eddies and simulate eddy-mean flow interactions in these key areas. The atmosphere-land component of our AWI-CM (Alfred Wegener Institute Climate Model) is ECHAM6-JSBACH developed at the Max-Planck-Institute for Meteorology in Hamburg, Germany. Here we present results of century-long uncoupled and coupled simulations on ocean model grids with different local refinements while keeping the atmosphere resolution constant in the coupled simulations. Results indicate that high horizontal resolutions in key regions such as the Gulf Stream / North Atlantic Current area or the Agulhas Stream can reduce biases such as the North West corner cold bias and the deep ocean model drift.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    College of Oceanography, Hohai University
    In:  EPIC3Polar Climate Change: Driving Processes, Extreme Events, and Global Linkages, Nanjing, China, 2017-10-23-2017-10-24Nanjing, China, College of Oceanography, Hohai University
    Publication Date: 2018-01-02
    Description: We have conducted a series of atmosphere-only and coupled model experiments on time scales from weather to climate and with different methods to address the question how the large scale circulation of the Northern mid-latitudes is affected by the shrinking Arctic sea ice as well as by the overlying atmosphere. A major pathway has been found from the Barents Sea / Kara Sea area to Eastern Europe and Northern Asia and a secondary one from the Canadian Arctic into North America. In contrast, the atmosphere above ocean areas is less affected by the Arctic. A recurring response feature to declined Arctic sea ice is the slowdown and southward shift of the jet stream with less cyclone activity north of it leading to around 0.5 K colder conditions over some limited regions of North America and North Siberia in winter consistent with a negative Arctic Oscillation index. This happens despite the tendency of less intense cold advection due to the warmer Arctic in cases of anomalous northerly flow. It should be noted that for robust responses large ensemble simulations are needed due to low signal-to-noise ratio. In this respect it has been proven helpful to perform simulations in a Numerical Weather Prediction setting as the short simulation time enables us to easily run ensembles of several hundreds of realizations. Furthermore, in such a setting the initial response to a suddenly changed Arctic sea ice cover can be studied giving us hints how anomalies in the atmosphere develop. Coupled model simulations hint at no discernable influence of shrinking Arctic sea ice on the ocean on time scales of a year while on decadal to centennial time scales the ocean starts to react with possible feedbacks to the atmosphere. Due to less and thinner sea ice cover the momentum flux into the ocean increases which spins up the Beaufort Gyre. This response propagates towards the North Atlantic as an increased outflow through the Fram Strait, which drives increased volume transport into the Barents Sea, thus fostering the Atlantification of the basin. The response is not confined to the interior of the Arctic and our results suggest that it may reach as far south as the North Atlantic Current as a combined response to the dynamical ocean adjustment triggered within the Arctic and, secondarily, to the atmospheric weakening of the westerly winds.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    College of Oceanography, Hohai University
    In:  EPIC3Polar Climate Change: Driving Processes, Extreme Events, and Global Linkages, Nanjing, China, 2017-10-23-2017-10-24Nanjing, China, College of Oceanography, Hohai University
    Publication Date: 2018-01-02
    Description: The AWI climate model AWI-CM consists of the Finite Element Sea-ice Ocean Model (FESOM) developed at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research in Bremerhaven and the ECHAM6 atmosphere land model developed at the Max Planck Institute for Meteorology in Hamburg. With the innovative flexible mesh structure of the FESOM model it is possible to highly resolve key ocean regions such as the western boundary currents or the Antarctic Circumpolar Current. In relatively coarse resolutions the model has proven to be of comparable quality as the CMIP5 models when measured with objective performance indices while in finer resolutions long-standing biases such as the North Atlantic deep ocean bias could be improved considerably. The AWI climate model will be part of CMIP6 including HighResMIP and production simulations have recently been started. Furthermore, at the moment the AWI-CM is being coupled to the Parallel Ice Sheet Model PISM to investigate the stability of the West Antarctic Ice Sheet when considering ice shelf – ocean interactions at very high resolutions (5 to 10 km) locally around Antarctica while leaving the ocean resolution in the order of 100 km in the dynamically less active subtropical areas.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-31
    Description: Predictive skills of coupled sea-ice/ocean and atmosphere models are limited by the chaotic nature of the atmosphere. Assimilation of observational information on ocean hydrography and sea ice allows to obtain a coupled-system state that provides a basis for subseasonal-to-seasonal ocean and sea-ice forecast (Mu et al., 2022). However, if the atmosphere is not additionally constrained, the quasi-random atmospheric states within an ensemble forecast lead to a fast divergence of the ocean and sea-ice states, degrading the system’s performance with respect to the sea ice forecasts. As reported previously, imposing an additional constraint by nudging large-scale winds to the ERA5 reanalysis data (Sánchez-Benítez et al., 2021; Athanase et al., 2022) improves predictive skills of the AWI Coupled Prediction System (AWI-CPS, Mu et al. 2022) with regard to sea ice drift (Losa et al., 2023). Here we provide results based on a much more extensive set of ensemble-based data assimilation experiments spanning the time period from 2002 to 2023 and a series of long forecast experiments over 2010 – 2023, initialized in four different seasons. We compare the performance of forecasts initialized from two sets of data assimilation experiments, with and without atmospheric wind nudging. The additional relaxation of the large-scale atmospheric circulation to the ERA5 reanalysis data for the initialization leads to reasonable atmospheric forecast skill on weather timescales: Despite the simple technique, the coarse resolution compared to NWP systems, and the limited optimization efforts, 10-day forecasts of the 500 hPa geopotential height are about as skillful as the best performing NWP forecasts were about 10 –15 years ago. Among other aspects, this leads to significantly improved subseasonal-to-seasonal sea-ice concentration and thickness forecasts. Athanase, M., Schwager, M., Streffing, J., Andrés-Martínez, M., Loza, S., and Goessling, H.: Impact of the atmospheric circulation on the Arctic snow cover and ice thickness variability , EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5836, https://doi.org/10.5194/egusphere-egu22-5836, 2022. Losa, S. N., Mu, L., Athanase, M., Streffing, J., Andrés-Martínez, M., Nerger, L., Semmler, T., Sidorenko, D., and Goessling, H. F.: Combining sea-ice and ocean data assimilation with nudging atmospheric circulation in the AWI Coupled Prediction System, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-14227, https://doi.org/10.5194/egusphere-egu23-14227, 2023. Mu, L. , Nerger, L. , Streffing, J. , Tang, Q. , Niraula, B. , Zampieri, L., Loza, S. N. and Goessling, H. F. (2022): Sea‐Ice Forecasts With an Upgraded AWI Coupled Prediction System , Journal of Advances in Modeling Earth Systems, 14 (12) . doi: 10.1029/2022ms003176 Sánchez-Benítez, A. , Goessling, H. , Pithan, F. , Semmler, T. and Jung, T. (2022): The July 2019 European Heat Wave in a Warmer Climate: Storyline Scenarios with a Coupled Model Using Spectral Nudging , Journal of Climate, 35 (8), pp. 2373-2390 . doi: 10.1175/JCLI-D-21-0573.1
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...