GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 44 (13). 6726-6734 .
    Publication Date: 2020-02-06
    Description: Previous studies have estimated that mantle serpentinization reactions generate H2 at a rate of 1010–1012 mol/yr along the global mid-ocean ridge (MOR) system. Here we present results of 3-D geodynamic simulations that predict rates of additional mantle serpentinization and H2 production at oceanic transform faults (OTF). We find that the extent and rate of mantle serpentinization increases with OTF length and is maximum at intermediate slip rates of 5 to 10 cm/yr. The additional global OTF-related production of H2 is found to be between 6.1 and 10.7 × 1011 mol/yr, which is comparable to the predicted background MOR rate of 4.1–15.0 × 1011 mol H2/yr. This points to oceanic transform faults as potential sites of intense fluid-rock interaction, where chemosynthetic life could be sustained by serpentinization reactions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: We reanalyze existing paleodata of global mean surface temperature ΔTg and radiative forcing ΔR of CO2 and land ice albedo for the last 800,000 years to show that a state‐dependency in paleoclimate sensitivity S, as previously suggested, is only found if ΔTg is based on reconstructions, and not when ΔTg is based on model simulations. Furthermore, during times of decreasing obliquity (periods of land‐ice sheet growth and sea level fall) the multi‐millennial component of reconstructed ΔTg diverges from CO2, while in simulations both variables vary more synchronously, suggesting that the differences during these times are due to relatively low rates of simulated land ice growth and associated cooling. To produce a reconstruction‐based extrapolation of S for the future we exclude intervals with strong ΔTg‐CO2 divergence and find that S is less state‐dependent, or even constant (state‐independent), yielding a mean equilibrium warming of 2–4 K for a doubling of CO2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-02-28
    Description: The conditions permitting mantle serpentinization during continental rifting are explored within 2-D thermotectonostratigraphic basin models, which track the rheological evolution of the continental crust, account for sediment blanketing effects, and allow for kinetically controlled mantle serpentinization processes. The basic idea is that the entire extending continental crust has to be brittle for crustal scale faulting and mantle serpentinization to occur. The isostatic and latent heat effects of the reaction are fully coupled to the structural and thermal solutions. A systematic parameter study shows that a critical stretching factor exists for which complete crustal embrittlement and serpentinization occurs. Increased sedimentation rates shift this critical stretching factor to higher values as sediment blanketing effects result in higher crustal temperatures. Sediment supply has therefore, through the temperature-dependence of the viscous flow laws, strong control on crustal strength and mantle serpentinization reactions are only likely when sedimentation rates are low and stretching factors high. In a case study for the Norwegian margin, we test whether the inner lower crustal bodies (LCB) imaged beneath the Møre and Vøring margin could be serpentinized mantle. Multiple 2-D transects have been reconstructed through the 3-D data set by Scheck-Wenderoth and Maystrenko (2011). We find that serpentinization reactions are possible and likely during the Jurassic rift phase. Predicted thicknesses and locations of partially serpentinized mantle rocks fit to information on LCBs from seismic and gravity data. We conclude that some of the inner LCBs beneath the Norwegian margin may be partially serpentinized mantle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    CAU
    In:  [Poster] In: The Lübeck Retreat, Collaborative Research SFB 574 Volatiles and Fluids in Subduction Zones: Climate Feedback and Trigger Mechanisms for Natural Disasters, 23.05.-25.05.2012, Lübeck . The Lübeck Retreat: final colloquium of SFB 574; May 23-25, 2012: program & abstracts ; p. 13 .
    Publication Date: 2012-10-12
    Description: The subduction of partially serpentinized oceanic mantle may potentially be the key geologic process leading to the regassing of Earth’s mantle and also has important consequences for subduction zone processes such as element cycling, slab deformation, and intermediate-depth seismicity. Little is known about the quantity of water that is retained in the slab during mantle serpentinization. Recent studies using thermodynamical and/or experimental models of subduction zone processes have assumed that the mantle is uniformly serpentinized to a depth determined from the equilibrium stability of serpentine minerals in P-T space. This approach yields an incomplete picture of the pattern of serpentinization that may occur during bending-related faulting; an initial state that is essential for quantifying subsequent dehydration processes. In order to provide further constraints on the pattern of hydration and the amount of water trapped in the subducting mantle, we build a 2-D reactive-flow model incorporating the kinetic rate-dependence of serpentinization based on experimental results. After simulating hydration processes at the trench outer-rise, we find that the water content in serpentinized mantle strongly depends on the age of the subducting lithosphere and subduction rate, with values ranging between 1.8x105 and 4.0x106 kgm-2 reactive water uptake into the subducting mantle column. Serpentinization also results in a reduction in surface heat flux towards the trench caused by advective downflow of seawater into the reaction region. Observed heat flow reductions are larger than the reduction due to the minimum-water downflow needed for partial serpentinization, predicting that active hydrothermal vents and chemosynthetic communities should also be associated with bend-fault serpentinization. Model results agree with previous studies that the lower plane of double Benioff zones can be generated due to dehydration of serpentinized mantle at depth. The depth-dependent pattern of serpentinization including reaction kinetics predicts a separation between the two Benioff planes consistent with seismic observations.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: High‐temperature hydrothermal venting has been discovered on all modern mid‐ocean ridges at all spreading rates. Although significant strides have been made in understanding the underlying processes that shape such systems, several first‐order discrepancies between model predictions and observations remain. One key paradox is that numerical experiments consistently show entrainment of cold ambient seawater in shallow high permeability ocean crust causing a temperature drop that is difficult to reconcile with high vent temperatures. We investigate this conundrum using a thermo‐hydro‐chemical model that couples hydrothermal fluid flow with anhydrite‐ and pyrite‐forming reactions in the shallow subseafloor. The models show that precipitation of anhydrite in warming seawater and in cooling hydrothermal fluids during mixing results in the formation of a chimney‐like subseafloor structure around the upwelling, high‐temperature plume. The establishment of such anhydrite‐sealed zones reduces mixing between the hydrothermal fluid and seawater and results in an increase in vent temperature. Pyrite subsequently precipitates close to the seafloor within the anhydrite chimney. Although anhydrite thus formed may be dissolved when colder seawater circulates through the crust away from the spreading axis, the inside pyrite walls would be preserved as veins in present‐day metal deposits, thereby preserving the history of hydrothermal circulation through shallow oceanic crust.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-15
    Description: Oceanic detachment faulting, a major mode of seafloor accretion at slow and ultraslow spreading ridges, is thought to occur during magma‐poor phases and be abandoned when magmatism increases. In this framework, detachment faulting is the result of temporal variations in magma flux, which is inconsistent with recent geophysical observations at the Longqi segment on the Southwest Indian Ridge (49°42′E). In this paper, we focus on this sequentially active detachment faulting system that includes an old, inactive detachment fault and a younger, active detachment fault. We investigate the mechanisms controlling the temporal evolution of this tectonomagmatic system by using 2D mid‐ocean ridge spreading models that simulate faulting and magma intrusion into a visco‐elasto‐plastic continuum. Our models show that temporal variations in magma flux alone are insufficient to match the inferred temporal evolution of the sequentially active detachment system. Rather we find that sequentially active detachment faulting spontaneously occurs at the Longqi segment as a function of lithospheric thickness. This finding is in agreement with an analytical model, which shows that a thicker axial lithosphere results in a smaller fault heave and that a flatter angle in lithosphere thickening away from the accretion axis stabilizes the active fault. A thicker axial lithosphere and its flatter off‐axis angle combined have the potential to modulate sequentially active detachment faulting at the Longqi segment. Our results thus suggest that temporal changes of magmatism are not necessary for the development and abandonment of detachment faults at ultraslow spreading ridges.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: video
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-01-02
    Description: We reanalyze existing paleodata of global mean surface temperature ΔTg and radiative forcing ΔR of CO2 and land ice albedo for the last 800,000 years to show that a state‐dependency in paleoclimate sensitivity S, as previously suggested, is only found if ΔTg is based on reconstructions, and not when ΔTg is based on model simulations. Furthermore, during times of decreasing obliquity (periods of land ice sheet growth and sea level fall) the multimillennial component of reconstructed ΔTg diverges from CO2, while in simulations both variables vary more synchronously, suggesting that the differences during these times are due to relatively low rates of simulated land ice growth and associated cooling. To produce a reconstruction‐based extrapolation of S for the future, we exclude intervals with strong ΔTg‐CO2 divergence and find that S is less state‐dependent, or even constant state‐independent), yielding a mean equilibrium warming of 2–4 K for a doubling of CO2.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...