GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Brill
    In:  In: New Knowledge and Changing Circumstances in the Law of the Sea. , ed. by Heidar, T. Brill, Leiden, pp. 327-342. ISBN 978-90-04-43775-3
    Publication Date: 2020-09-14
    Description: Exploitation of mineral ores from the deep sea will impact the abyssal environment by removing the mineral deposits and sediments from the seafloor surface, where most deep-sea benthic life is found. Additional effects are expected from the blanketing of the mined area and the pristine surrounding seabed with sediments and/or mineral debris. As a consequence, seafloor integrity is lost in the impacted area, species densities and biodiversity are reduced, and ecosystem functions are negatively affected. Although a lot of open questions remain regarding, for example, indicator species, disturbance thresholds, and renaturation options, it is becoming increasingly clear that the induced environmental impacts last for at least many decades to centuries and affect all ecosystem compartments.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Copernicus Publications on behalf of the European Geosciences Union
    In:  EPIC3Biogeosciences Discussions, Copernicus Publications on behalf of the European Geosciences Union, 12, pp. 6445-6488
    Publication Date: 2017-01-30
    Description: The outer Western Crimean Shelf of the Black Sea is a natural laboratory to investigate effects of stable oxic vs. varying hypoxic conditions on seafloor biogeochemical processes and benthic community structure. Bottom water oxygen concentrations varied between normoxic (175 μmol O2 L−1) and hypoxic (〈 63 μmol O2 L−1) or even anoxic/sulfidic conditions within a few kilometres distance. Variations in oxygen concentrations between 160 and 10 μmol L−1 even occurred within hours close to the chemocline at 134 m water depth. Total oxygen uptake, including diffusive as well as fauna-mediated oxygen consumption, decreased from 〉 15 mmol m−2 d−1 in the oxic zone to 〈 9 mmol m−2 d−1 in the hypoxic zone, correlating with changes in macrobenthos composition. Benthic diffusive oxygen uptake rates, comprising microbial respiration plus reoxidation of inorganic products, were around 4.5 mmol m−2 d−1, but declined to 1.3 mmol m−2 d−1 at oxygen concentrations below 20 μmol L−1. Measurements and modelling of pore water profiles indicated that reoxidation of reduced compounds played only a minor role in the diffusive oxygen uptake, leaving the major fraction to aerobic degradation of organic carbon. Remineralization efficiency decreased from 100% in the oxic zone, to 50% in the oxic-hypoxic, to 10% in the hypoxic-anoxic zone. Overall the faunal remineralization rate was more important, but also more influenced by fluctuating oxygen concentrations than microbial and geochemical oxidation processes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...