GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Book
    Book
    Bonn : Dümmler
    Keywords: Cyclones Antarctica ; Weddell Sea ; Hochschulschrift ; Polargebiete ; Tiefdruckgebiet ; Meso-Scale ; Numerisches Modell
    Type of Medium: Book
    Pages: 156 S , Ill., graph. Darst., Kt
    ISBN: 3427760510
    Series Statement: Bonner meteorologische Abhandlungen 45
    DDC: 551.551309989
    RVK:
    Language: German
    Note: Zsfassung in engl. Sprache , Zugl.: Bonn, Univ., Habil.-Schr., 1995
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Hydrology, 352 (3-4). pp. 296-308.
    Publication Date: 2018-12-31
    Description: Precipitation measurement by radar allows for areal rainfall determination with a high spatial and temporal resolution. However, hydrological applications require an accuracy of the precipitation quantification which cannot be obtained by today’s weather radar devices. The quality of the radar-derived precipitation can be significantly improved with the aid of ground measurements. In this paper, a complete processing pipeline for real-time radar precipitation determination using a modified statistical objective analysis method is presented. Thereby, several additional algorithms, such as a dynamical use of Z–R relationships, a bias correction and an advection correction scheme are employed. The performance of the algorithms is tested for several case studies. For an error analysis, an eight months data set of X-band radar scans and rain gauge precipitation measurements is used. We show a reduction in the radar–rain gauge RMS difference of up to 59% for the optimal combination of the different algorithms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-08
    Description: Changes in the characteristics of cyclone activity (frequency, depth and size) in the Arctic are analyzed based on simulations with state-of-the-art regional climate models (RCMs) from the Arctic-CORDEX initiative and global climate models (GCMs) from CMIP5 under the Representative Concentration Pathway (RCP) 8.5 scenario. Most of RCMs show an increase of cyclone frequency in winter (DJF) and a decrease in summer (JJA) to the end of the 21st century. However, in one half of the RCMs, cyclones become weaker and substantially smaller in winter and deeper and larger in summer. RCMs as well as GCMs show an increase of cyclone frequency over the Baffin Bay, Barents Sea, north of Greenland, Canadian Archipelago, and a decrease over the Nordic Seas, Kara and Beaufort Seas and over the sub-arctic continental regions in winter. In summer, the models simulate an increase of cyclone frequency over the Central Arctic and Greenland Sea and a decrease over the Norwegian and Kara Seas by the end of the 21st century. The decrease is also found over the high-latitude continental areas, in particular, over east Siberia and Alaska. The sensitivity of the RCMs' projections to the boundary conditions and model physics is estimated. In general, different lateral boundary conditions from the GCMs have larger effects on the simulated RCM projections than the differences in RCMs' setup and/or physics.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-14
    Description: The Arctic has warmed more than twice the rate of the entire globe. To quantify possible climate change effects, we calculate wind energy potentials from a multi-model ensemble of Arctic-CORDEX. For this, we analyze future changes of wind power density (WPD) using an eleven-member multi-model ensemble. Impacts are estimated for two periods (2020–2049 and 2070–2099) of the 21st century under a high emission scenario (RCP8.5). The multi-model mean reveals an increase of seasonal WPD over the Arctic in the future decades. WPD variability across a range of temporal scales is projected to increase over the Arctic. The signal amplifies by the end of 21st century. Future changes in the frequency of wind speeds at 100 m not useable for wind energy production (wind speeds below 4 m/s or above 25 m/s) has been analyzed. The RCM ensemble simulates a more frequent occurrence of 100 m non-usable wind speeds for the wind-turbines over Scandinavia and selected land areas in Alaska, northern Russia and Canada. In contrast, non-usable wind speeds decrease over large parts of Eastern Siberia and in northern Alaska. Thus, our results indicate increased potential of the Arctic for the development and production of wind energy. Bias corrected and not corrected near-surface wind speed and WPD changes have been compared with each other. It has been found that both show the same sign of future change, but differ in magnitude of these changes. The role of sea-ice retreat and vegetation expansion in the Arctic in future on near-surface wind speed variability has been also assessed. Surface roughness through sea-ice and vegetation changes may significantly impact on WPD variability in the Arctic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...