GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    The @journal of eukaryotic microbiology 52 (2005), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Eukaryote origin and earliest diversification occurred in the Proterozoic when Earth's atmosphere was undoubtedly different from that of today. Atmospheric oxygen levels were increasing from the primordial anoxic atmosphere due, for example, to cyanobacterial oxygenic photosynthesis. Late Proterozoic (∼0.6–0.9 Gya) deep-ocean oxygen concentrations are less certain, but geochemical evidence suggests anoxia and hydrogen-sulfide enrichment. It can, therefore, be postulated that initial eukaryotic diversification occurred in oxygen-depleted, sulfide-enriched environments. Foraminifera are aerobes and, thus, not expected in anoxic settings. Recently, however, we found a saccamminid allogromian in a deep-water anoxic, sulfidic setting. Samples were collected from Santa Barbara Basin (California) when bottom-water oxygen was undetectable and sediments smelled strongly of hydrogen sulfide. Foraminiferal SSU rDNA sequences recovered from sediments included one from a previously uncharacterized saccamminid. Ultrastructural analysis indicated the presence of intact Golgi, mitochondria, and prokaryotic endobionts. Saccamminid occurrence in environmental conditions known to exist during the Proterozoic supports the possibility of their origin early in eukaryotic evolution. Extant saccamminids could have competed well in the prokaryote-dominated Proterozoic benthic ecosystem given their diet includes bacteria, bacterial biofilms and unicellular algae. Thus, Proterozoic foraminifers may have been top carnivores.Funded by NASA NRA-01-01-EXB-057, the Geological Society of America's W. Storrs Cole Memorial Research Award, and NSF OPP0003639.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-08
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schmidt, C., Geslin, E., Bernhard, J. M., LeKieffre, C., Svenning, M. M., Roberge, H., Schweizer, M., & Panieri, G. Deposit-feeding of Nonionellina labradorica (foraminifera) from an Arctic methane seep site and possible association with a methanotroph. Biogeosciences, 19(16), (2022): 3897–3909, https://doi.org/10.5194/bg-19-3897-2022.
    Description: Several foraminifera are deposit feeders that consume organic detritus (dead particulate organic material with entrained bacteria). However, the role of such foraminifera in the benthic food web remains understudied. Foraminifera feeding on methanotrophic bacteria, which are 13C-depleted, may cause negative cytoplasmic and/or calcitic δ13C values. To test whether the foraminiferal diet includes methanotrophs, we performed a short-term (20 h) feeding experiment with Nonionellina labradorica from an active Arctic methane-emission site (Storfjordrenna, Barents Sea) using the marine methanotroph Methyloprofundus sedimenti and analysed N. labradorica cytology via transmission electron microscopy (TEM). We hypothesised that M. sedimenti would be visible post-experiment in degradation vacuoles, as evidenced by their ultrastructure. Sediment grains (mostly clay) occurred inside one or several degradation vacuoles in all foraminifers. In 24 % of the specimens from the feeding experiment degradation vacuoles also contained bacteria, although none could be confirmed to be the offered M. sedimenti. Observations of the apertural area after 20 h incubation revealed three putative methanotrophs, close to clay particles, based on bacterial ultrastructural characteristics. Furthermore, we noted the absence of bacterial endobionts in all examined N. labradorica but confirmed the presence of kleptoplasts, which were often partially degraded. In sum, we suggest that M. sedimenti can be consumed via untargeted grazing in seeps and that N. labradorica can be generally classified as a deposit feeder at this Arctic site.
    Description: This research has been supported by the French scientific programme MOPGA (Make our Planet Great Again) managed by the National Research Agency; the Norwegian Research Council through the Centre for Arctic Gas Hydrate, Environment and Climate (project number 223259); NORCRUST (project number 255250); and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 444059848.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...