GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (31)
  • Wiley  (16)
  • Kiel : GEOMAR, Forschungszentrum für Marine Geowissenschaften  (2)
  • Kiel : Univ., GEOMAR Forschungszentrum für marine Geowissenschaften  (2)
  • Blackwell Publishing Ltd
  • 1
    Keywords: Forschungsbericht ; Südchinesisches Meer
    Description / Table of Contents: South china sea, basin development, rifting process, passive margin, seismics
    Type of Medium: Online Resource
    Pages: 14 p. = 4 MB, text and images , ill.
    Edition: [Electronic ed.]
    Language: German
    Note: Contract no. BMBF 03G0525A , Differences between the printed and electronic version of the document are possible. - Bibliographic datas partially researched , nIndex
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Forschungsbericht
    Type of Medium: Book
    Pages: 34, 3 Bl. , graph. Darst.
    Language: German
    Note: Förderkennzeichen BMFT/BMBF 03G0098B
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Forschungsbericht
    Type of Medium: Book
    Pages: 43 S. , zahlr. graph. Darst
    Language: English
    Note: Förderkennzeichen BMFT/BMBF 03G0098B
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Forschungsbericht ; Südchinesisches Meer
    Type of Medium: Book
    Pages: 13 Bl. , Ill., graph. Darst.
    Language: German
    Note: Förderkennzeichen BMBF 03G0525A , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Dokumentversion können nicht ausgeschlossen werden , Auch als elektronisches Dokument vorh
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 116 (1994), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: We present the computational concept and first results of an automated 2-D ray-tracing algorithm which combines the standard ray method with the method of edge waves and paraxial ray tracing. Reliable ray synthetic seismograms are obtained for subsurface structures of high complexity. Both diffracted and multiple diffracted arrivals are automatically computed, complementing all types of primary arrivals (reflected, multiple reflected, converted waves, etc.) where geometric shadow zones are caused by edges (inhomogeneities) in the subsurface model. The method of computation can be summarized as follows: (1) during standard ray tracing, properties of central and paraxial rays are computed for a set of neighbouring rays. (2) Diffraction points (edges) are identified by comparing the amplitude and traveltime differences of neighbouring rays with the corresponding values of their paraxial approximation. (3) Detected edges are used as source points for diffracted rays. (4) Repetition of (1)-(3) for diffracted rays allows computation of multiple diffractions (‘diffracted diffractions’). (5) The amplitude decay of diffracted arrivals is computed according to the theory of edge waves. Its critical variables are expressed in terms of second-order paraxial traveltimes. The method is demonstrated for a simple and complex synthetic model and a real data complex model.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  Tectonophysics, 176 (1-2). pp. 25-41.
    Publication Date: 2018-01-17
    Description: A seismic refraction profile across Langeland (Denmark) obtained from land stations recording airgun shots allowed to resolve upper crustal velocities to a depth of 8 km. The profile traverses the proposed Caledonian Deformation Front and the Ringkoebing-Fyn High. The Ringkoebing-Fyn High is about 10 km wide and the top basement lies less than 2 km below the surface. Basement velocities as high as 6.4 km/s, at depths between 6 and 8 km, can be best explained by compositional changes between adjoining basement units to the north and south. South of the Ringkoebing-Fyn High another high velocity basement unit is encountered and most probably represents a basement affected by the Caledonian orogeny. Along this profile on Langeland the positions of the Caledonian Deformation Front and the northern limit of the Zechstein deposits coincide.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Elsevier
    In:  Tectonophysics, 173 (1-4). pp. 83-93.
    Publication Date: 2019-05-08
    Description: A deep Seismic reflection profile collected by DEKORP and BELCORP in the western Rhenish Massif was supplemented by wide-angle measurements. Signals from a vibrator source were successfully recorded to a distance of 60 km. A passive recording array was operated that recorded all shots along the profile. The wide-angle and near-vertical data were used to construct a velocity model for the profile. Most of the wide-angle reflections coincide with strong near-vertical reflections or bands of high reflectivity. The North Variscan Deformation Front, seen as a prominent shallow reflection on many profiles in this region, separates an upper crust with rather nigh velocities from a layer with lower velocities underneath. At a depth of 20–22 km a thin (2–3 km thick) layer of high velocities is found. The Moho is not reflective either in the near-vertical or in the wide-angle data, suggesting the presence of a thick crust-mantle transition zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-07-16
    Description: The convergent margin of the central Sunda Arc in Indonesia was the target of a reflection and refraction seismic survey conducted in 1998 and 1999. Along two seismic lines across the subduction complex off southern Sumatra and off Sunda Strait, coincident multichannel and wide-angle data were collected, complemented by two refraction strike-lines in the forearc basin off Sumatra. The combined analysis of the acquired data allows us to present a detailed model of the subduction zone where initiation of strain partitioning occurs due to the onset of oblique subduction. The dip of the subducted plate is well defined along both dip-lines and a lateral increase from 5° to 7° from beneath the outer high off Sumatra to Sunda Strait is supported by complementary gravity modelling. The downgoing slab is traced to a depth of more than 30km. On both reflection dip-lines, a clearly developed backstop structure underlying a trench slope break defines the landward termination of the active accretionary prism and separates it from the outer high. Active subduction accretion is supported by laterally increasing velocities between the deformation front and the active backstop structure. Seismic velocities of the outer high are moderate along both lines (〈5.8kms−1 at 20km depth), suggesting a sedimentary composition. Reduced reflectivity beneath a rugged top basement traced along the outer high of both dip-lines supports a high degree of deformation and material compaction. Several kilometres of sediment has accumulated in the forearc domain, although a distinct morphological basin is only recognized off southern Sumatra and is not developed off Sunda Strait. The bathymetric elevation of the Java shelf that is encountered in the southern Sunda Strait corresponds to increased velocities of a basement high there and is connected to extensional structures of the Sunda Strait transtensional basin. Differences observed in the morphology of the forearc domain are also reflected in the lower crustal structure. Off southern Sumatra, the velocity–depth model clearly indicates a continental-type crust underlying the forearc basin, whereas lower velocities are found beneath the Sunda Strait forearc domain. Off Sumatra, some 3-D constraint on the upper plate structure is gained from the refraction strike-lines, which in addition is supported by synthetic data modelling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-06
    Description: Highlights • The Lofoten/Vesterålen margin has less Early Cenozoic lava flows than believed. • Breakup of the L/V margin is delayed ∼1 m.y. from the Vøring Plateau to the south. • Late arrival of the Iceland Plume may explain delayed breakup and prolonged extension. The Early Eocene continental breakup was magma-rich and formed part of the North Atlantic Igneous Province. Extrusive and intrusive magmatism was abundant on the continental side, and a thick oceanic crust was produced up to a few m.y. after breakup. However, the extensive magmatism at the Vøring Plateau off mid-Norway died down rapidly northeastwards towards the Lofoten/Vesterålen Margin. In 2003 an Ocean Bottom Seismometer profile was collected from mainland Norway, across Lofoten, and into the deep ocean. Forward/inverse velocity modeling by raytracing reveals a continental margin transitional between magma-rich and magma-poor rifting. For the first time a distinct lower-crustal body typical for volcanic margins has been identified at this outer margin segment, up to 3.5. km thick and ∼50. km wide. On the other hand, expected extrusive magmatism could not be clearly identified here. Strong reflections earlier interpreted as the top of extensive lavas may at least partly represent high-velocity sediments derived from the shelf, and/or fault surfaces. Early post-breakup oceanic crust is moderately thickened (∼8. km), but is reduced to 6. km after 1. m.y. The adjacent continental crystalline crust is extended down to a minimum of 4.5. km thickness. Early plate spreading rates derived from the Norway Basin and the northern Vøring Plateau were used to calculate synthetic magnetic seafloor anomalies, and compared to our ship magnetic profile. It appears that continental breakup took place at ∼53.1. Ma, ∼1. m.y. later than on the Vøring Plateau, consistent with late strong crustal extension. The low interaction between extension and magmatism indicates that mantle plume material was not present at the Lofoten Margin during initial rifting, and that the observed excess magmatism was created by late lateral transport from a nearby pool of plume material into the lithospheric rift zone at breakup time.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-06
    Description: The continuation of the Caledonides into the Barents Sea has long been a subject of discussion, and two major orientations of the Caledonian deformation fronts have been suggested: NNW-SSE striking and NE-SW striking. A regional NW-SE oriented ocean bottom seismic profile across the western Barents Sea was acquired in 2014. In this paper we map the crust and upper mantle structure along this profile in order to discriminate between different interpretations of Caledonian structural trends and orientation of rift basins in the western Barents Sea. Modeling of P-wave travel times has been done using a ray-tracing method, and combined with gravity modeling. The results show high P-wave velocities (4 km/s) close to the seafloor, as well as localized sub-horizontal high velocity zones (6.0 km/s and 6.9 km/s) at shallow depths which are interpreted as magmatic sills. Refractions from the top of the crystalline basement together with reflections from the Moho give basement velocities from 6.0 km/s at the top to 6.7 km/s at the base of the crust. P-wave travel time modeling of the OBS profile indicate an eastwards increase in velocities from 6.4 km/s to 6.7 km/s at the base of the crystalline crust, and the western part of the profile is characterized by a higher seismic reflectivity than the eastern part. This change in seismic character is consistent with observations from vintage reflection seismic data and is interpreted as a Caledonian suture extending through the Barents Sea, separating Barentsia and Baltica. Local deepening of Moho (from 27 km to 33 km depth) creates “root structures” that can be linked to the Caledonian compressional deformation or a suture zone imprinted in the lower crust. Our model supports a separate NE-SW Caledonian trend extending into the central Barents Sea, branching off from the northerly trending Svalbard Caledonides, implying the existence of Barentsia as an independent microcontinent between Laurentia and Baltica.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...