GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Blackwell Science Ltd  (11)
  • Blackwell Publishing Ltd  (7)
  • Berlin, Heidelberg :Springer Berlin / Heidelberg,  (2)
  • 11
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Amyloidogenic processing of the β-amyloid precursor protein (APP) has been implicated in the pathology of Alzheimer’s disease. Because it has been suggested that catabolic processing of the APP holoprotein occurs in acidic intracellular compartments, we studied the effects of the protonophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) and the H+-ATPase inhibitor bafilomycin A1 on APP catabolism in human embryonic kidney 293 cells expressing either wild-type or “Swedish” mutant APP. Unlike bafilomycin A1, which inhibits β-amyloid production in cells expressing mutant but not wild-type APP, FCCP inhibited β-amyloid production in both cell types. Moreover, the effects of FCCP were independent of alterations in total cellular APP levels or APP maturation, and the concentrations used did not alter either cellular ATP levels or cell viability. Bafilomycin A1, which had no effect on β-amyloid production in wild-type cells, inhibited endocytosis of fluorescent transferrin, whereas concentrations of FCCP that inhibited β-amyloid production in these cells had no effect on endosomal function. Thus, in wild-type-expressing cells it appears that the β-amyloid peptide is not produced in the classically defined endosome. Although bafilomycin A1 decreased β-amyloid release from cells expressing mutant APP but not wild-type APP, it altered lysosomal function in both cell types, suggesting that in normal cells β-amyloid is not produced in the lysosome. Although inhibition of β-amyloid production by bafilomycin A1 in mutant cells may occur via changes in endosomal/lysosomal pH, our data suggest that FCCP inhibits wild-type β-amyloid production by acting on a bafilomycin A1-insensitive acidic compartment that is distinct from either the endosome or the lysosome.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Acetylcholinesterase (AChE) expression is markedly affected in Alzheimer's disease (AD). AChE activity is lower in most regions of the AD brain, but it is increased within and around amyloid plaques. We have previously shown that AChE expression in P19 cells is increased by the amyloid β protein (Aβ). The aim of this study was to investigate AChE expression using a transgenic mouse model of Aβ overproduction. The β-actin promoter was used to drive expression of a transgene encoding the 100-amino acid C-terminal fragment of the human amyloid precursor protein (APP CT100). Analysis of extracts from transgenic mice revealed that the human sequences of full-length human APP CT100 and Aβ were overexpressed in the brain. Levels of salt-extractable AChE isoforms were increased in the brains of APP CT100 mice. There was also an increase in amphiphilic monomeric form (GA1) of AChE in the APP CT100 mice, whereas other isoforms were not changed. An increase in the proportion of GA1 AChE was also detected in samples of frontal cortex from AD patients. Analysis of AChE by lectin binding revealed differences in the glycosylation pattern in APP CT100 mice similar to those observed in frontal cortex samples from AD. The results are consistent with the possibility that changes in AChE isoform levels and glycosylation patterns in the AD brain may be a direct consequence of altered APP metabolism.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 72 (1999), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Perturbations to glutathione (GSH) metabolism may play an important role in neurodegenerative disorders such as Alzheimer's, Parkinson's, and prion diseases. A primary function of GSH is to prevent the toxic interaction between free radicals and reactive transition metals such as copper (Cu). Due to the potential role of Cu in neurodegeneration, we examined the effect of GSH depletion on Cu toxicity in murine primary neuronal cultures. Depletion of cellular GSH with L-buthionine-[S,R]-sulfoximine resulted in a dramatic potentiation of Cu toxicity in neurons without effect on iron (Fe) toxicity. Similarly, inhibition of glutathione reductase (GR) activity with 1,3-bis(2-chloroethyl)-1-nitrosurea also increased Cu toxicity in neurons. To determine if the Alzheimer's amyloid-β (Aβ) peptide can affect neuronal resistance to transition metal toxicity, we exposed cultures to nontoxic concentrations of Aβ25-35 in the presence or absence of Cu or Fe. Aβ25-35 pretreatment was found to deplete neuronal GSH and increase GR activity, confirming the ability of Aβ to perturb neuronal GSH homeostasis. Aβ25-35 pretreatment potently increased Cu toxicity but had no effect on Fe toxicity. These studies demonstrate an important role for neuronal GSH homeostasis in selective protection against Cu toxicity, a finding with widespread implications for neurodegenerative disorders.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Previous studies have demonstrated the molecular linkage of three causative genes for early-onset Alzheimer’s disease: the presenilin 1 gene on chromosome 14, the presenilin 2 gene on chromosome 1, and the amyloid precursor protein gene on chromosome 21. In the present study, we have investigated the distributions of the ∼20-kDa C-terminal and ∼30-kDa N-terminal fragments of presenilin 1 and the amyloid precursor protein in rat brain and compared them with the distribution of several marker proteins. The fragments of presenilin 1 are present in synaptic plasma membranes, neurite growth cone membranes, and small synaptic vesicles of rat brain. Both proteolytic fragments are coenriched in the corresponding tissue fractions. Based on this observation, it seems likely that N- and C-terminal presenilin 1 fragments form a functional unit while remaining associated. In contrast to a predominant subcellular localization of presenilin 1 to the endoplasmic reticulum and Golgi apparatus in different cell lines, our results indicate that rat brain presenilin 1 fragments exit from these biosynthetic compartments to reach synaptic organelles in neurons.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We and colleagues have shown that the amyloid protein precursor of Alzheimer’s disease (APP) is distributed along the surface of neurites of fixed but nonpermeabilized neurons in primary culture in a segmental pattern, which shows colocalization with some markers of adhesion patches. This is in contrast to the diffuse pattern of immunoreactivity seen after permeabilization. We have also recently demonstrated that the APP in these surface patches is likely to be integral to the membrane rather than secreted and re-adsorbed, based on alkali stripping experiments and on soluble APP adsorption experiments. Total cellular APP has previously been shown to have a short half-life of ≈ 30–60 min. We confirm this in neurons in primary culture in pulse-chase experiments using short labelling times. Additionally, we provide evidence that a separate, stable pool of neuronal APP can be demonstrated in pulse-chase experiments using long labelling times. Experiments involving inhibition of protein synthesis suggest that this corresponds with the surface, segmental pool. Metabolic labelling followed by surface biotinylation and two-stage precipitation demonstrates that the surface APP is trans-membrane and full-length (not carboxyl-terminal truncated), and confirms that the surface APP belongs to the stable pool. This two-stage procedure is necessary as the surface APP appears to be present in low copy number, and is difficult to detect by direct labelling. This information is consistent with a role for APP in stable cell-matrix or cell–cell interactions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 695 (1993), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Notes: Several reports addressed the issue of how the alternative splicing of exon 7 and 8 in the APP pre-mRNA is regulated in different tissues. Of special interest here was the potential involvement of exon 7 containing APP splice isoforms, since this exon codes for a serine protease inhibitor and is therefore of putative relevance for amyloidogenic catabolism of the precursor protein. The recent identification of a third alternative splice site in close proximity to the βA4-amyloid portion in the APP gene which may also increase APP amyloidogenicity, allowed us to investigate its regulation in cells of the central nervous system. With our assay, we were able to resolve six different APP isoforms of the eight potential isoforms which can be generated from the three alternatively spliced exons 7, 8, and 15. We demonstrate here that, in addition to rat brain microglia cells, astrocyte-enriched cultures also skip the novel alternative 3′-splice site in front of exon 15, generating L-APP mRNA. Neurons are the only cells in the central nervous system which seem to use the 3′-splice site of intron 14 nearly 100%. Interestingly, this very 3′-splice site is the only one present in the APP gene that completely matches the consensus sequence for the branchpoint sequence proposed for introns. We would therefore suggest that neurons lack a specific splicing factor which inhibits the use of the rather strong 3′-splice site in front of exon 15. It remains to be shown whether this is also the case for neurons in Alzheimer's disease.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Notes: A four- to fivefold overexpression of the gene for the Alzheimer β/A4 amyloid precursor protein (APP) in individuals with Down's Syndrome (DS) appears to be responsible for the fifty year earlier onset of Alzheimer's disease (AD) pathology in DS compared to the normal population. It is therefore likely that a deregulated overexpression of the APP gene is a risk factor for the β/A4 amyloid formation. To test this hypothesis and to get a better understanding of how APP expression is regulated, we studied the 5′ control region of the human APP gene, alternative splicing of the 19 APP exons, and APP biogenesis, metabolism and function. The analysis of the APP promoter revealed its similarity with those of housekeeping genes by the presence of a GC-rich region around the transcription start site and the lack of a TATA box. Gene transfer experiments showed this GC-rich region to contain overlapping binding sites for different transcription factors whose binding is mutually excluded. An imbalance between these factors may cause APP overexpression and predispose to AD pathology. Another putative risk factor for AD is regulation of splicing of exon 7 in APP mRNA's which changes in brain during aging. This is relevant for APP processing since exon 7 codes for a Kunitz protease inhibitory domain. Investigation of further splicing adjacent to the β/A4 exons 16 and 17 which might also interfere with APP processing led to the identification of the leukocyte-derived (L-APP) splice forms which lack exon 15. In brain this splicing occurs in activated astrocytes and microglia. The localization of APP at synaptic sites in brain suggests that APP regulation and expression are critical determinants of a potential and early impairment of central synapses. This may be the case during pathological evolution of AD and DS when β/A4 derived from synaptic APP is converted to β/A4 amyloid by radical generation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 695 (1993), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Notes: βA4, the principal constituent of the brain amyloid collections in Alzheimer's disease, is derived from a much larger precursor, the amyloid protein precursor (APP). APP exists in the blood as full-length, potentially amyloidogenic forms in platelets, and as an attenuated species in plasma and T-lymphocytes. Studies of circulating APP facilitate the elaboration of the function of this protein, as well as the elucidation of its processing in health and disease.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 695 (1993), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Notes: Alzheimer's disease (AD) is characterized by the presence of extracellular amyloid plaques, which contain a protein referred to as the amyloid or βA4 protein. The βA4 protein is derived from a larger precursor protein (APP). Studies of autosomal-dominant forms of AD have established the central role of APP in the pathogenesis of the disease. Despite considerable research, the function of APP is unknown. APP can be processed by at least two separate routes. The first route involves a protease known as “APP secretase,” which cleaves within the amyloid sequence, thereby mitigating amyloid formation. The second route may result in the production of potentially amyloidogenic fragments. Our studies suggest that following release from the cell membrane, APP interacts with components of the extracellular matrix (ECM) such as the heparan sulfate proteoglycans (HSPG's). The interaction of APP with HSPG's may be important for the function of APP. Substratum-bound APP was found to dramatically increase neurite outgrowth and survival of chick sympathetic neurons in vitro. This effect was dependent upon the presence of substratum-bound HSPG. The results suggest that normally, when bound to the ECM, APP functions to promote neurite outgrowth and/or cell survival. Loss of this normal trophic function might occur in AD, when APP is proteolytically processed via the amyloidogenic pathway.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 456 (1985), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...