GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 72 (1999), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Perturbations to glutathione (GSH) metabolism may play an important role in neurodegenerative disorders such as Alzheimer's, Parkinson's, and prion diseases. A primary function of GSH is to prevent the toxic interaction between free radicals and reactive transition metals such as copper (Cu). Due to the potential role of Cu in neurodegeneration, we examined the effect of GSH depletion on Cu toxicity in murine primary neuronal cultures. Depletion of cellular GSH with L-buthionine-[S,R]-sulfoximine resulted in a dramatic potentiation of Cu toxicity in neurons without effect on iron (Fe) toxicity. Similarly, inhibition of glutathione reductase (GR) activity with 1,3-bis(2-chloroethyl)-1-nitrosurea also increased Cu toxicity in neurons. To determine if the Alzheimer's amyloid-β (Aβ) peptide can affect neuronal resistance to transition metal toxicity, we exposed cultures to nontoxic concentrations of Aβ25-35 in the presence or absence of Cu or Fe. Aβ25-35 pretreatment was found to deplete neuronal GSH and increase GR activity, confirming the ability of Aβ to perturb neuronal GSH homeostasis. Aβ25-35 pretreatment potently increased Cu toxicity but had no effect on Fe toxicity. These studies demonstrate an important role for neuronal GSH homeostasis in selective protection against Cu toxicity, a finding with widespread implications for neurodegenerative disorders.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...