GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Recent studies have shown that the binding of the amyloid protein precursor (APP) of Alzheimer's disease to heparan sulfate proteoglycans (HSPGs) can modulate a neurite outgrowth-promoting function associated with APP. We used three different approaches to identify heparin-binding domains in APP. First, as heparin-binding domains are likely to be within highly folded regions of proteins, we analyzed the secondary structure of APP using several predictive algorithms. This analysis showed that two regions of APP695 contain a high degree of secondary structure, and clusters of basic residues, considered mandatory for heparin binding, were found principally within these regions. To determine which domains of APP bind heparin, deletion mutants of APP695 were prepared and analyzed for binding to a heparin affinity column. The results suggested that there must be at least two distinct heparin-binding regions in APP. To identify novel heparin-binding regions, peptides homologous to candidate heparin-binding domains were analyzed for their ability to bind heparin. These experiments suggested that APP contains at least four heparin-binding domains. The presence of more than one heparin-binding domain on APP suggests the possibility that APP may interact with more than one type of glycosaminoglycan.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 695 (1993), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Notes: Alzheimer's disease (AD) is characterized by the presence of extracellular amyloid plaques, which contain a protein referred to as the amyloid or βA4 protein. The βA4 protein is derived from a larger precursor protein (APP). Studies of autosomal-dominant forms of AD have established the central role of APP in the pathogenesis of the disease. Despite considerable research, the function of APP is unknown. APP can be processed by at least two separate routes. The first route involves a protease known as “APP secretase,” which cleaves within the amyloid sequence, thereby mitigating amyloid formation. The second route may result in the production of potentially amyloidogenic fragments. Our studies suggest that following release from the cell membrane, APP interacts with components of the extracellular matrix (ECM) such as the heparan sulfate proteoglycans (HSPG's). The interaction of APP with HSPG's may be important for the function of APP. Substratum-bound APP was found to dramatically increase neurite outgrowth and survival of chick sympathetic neurons in vitro. This effect was dependent upon the presence of substratum-bound HSPG. The results suggest that normally, when bound to the ECM, APP functions to promote neurite outgrowth and/or cell survival. Loss of this normal trophic function might occur in AD, when APP is proteolytically processed via the amyloidogenic pathway.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...