GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Irrigation--Management. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (680 pages)
    Edition: 1st ed.
    ISBN: 9780128118566
    DDC: 333.913
    Language: English
    Note: Front Cover -- Planning and Evaluation of Irrigation Projects -- Dedication -- Planning and Evaluationof Irrigation Projects Methods and Implementation -- Copyright -- Contents -- Preface -- Acknowledgments -- 1 - INTRODUCTION -- 1.1 IRRIGATION: DEFINITION, FUNCTIONS, ADVANTAGES, AND DISADVANTAGES -- 1.2 IRRIGATION PLANNING -- 1.3 NEED OF EVALUATION: BENCHMARKING AND WATER AUDITING -- 1.4 ORGANIZATION OF THIS BOOK -- 2 - IRRIGATION PROJECT PLANNING -- 2.1 PLANNING STAGES -- 2.1.1 PROJECT IDENTIFICATION -- 2.1.2 PROJECT PREPARATION AND ANALYSIS -- 2.1.3 PROJECT APPRAISAL -- 2.1.4 PROJECT IMPLEMENTATION -- 2.1.5 MONITORING AND EVALUATION -- 2.2 INVESTIGATION PHASES AND DATA COLLECTION -- 2.2.1 DATA COLLECTION -- 2.3 SCOPE OF WORK FOR PLANNING OR PREFEASIBILITY REPORT STAGE -- 2.4 SCOPE OF WORK FOR DETAILED INVESTIGATION OR DETAILED PROJECT REPORT STAGE -- 2.4.1 ACTIVITIES FOR THE PREPARATION OF DETAILED PROJECT REPORT -- 2.4.2 DELIVERABLES AND IMPLEMENTATION PLAN TO BE INCORPORATED IN DETAILED PROJECT REPORT -- 2.5 FACTORS AFFECTING THE DEVELOPMENT OF IRRIGATION FACILITIES -- 2.5.1 SOIL -- 2.5.2 CLIMATE -- 2.5.3 TOPOGRAPHY -- 2.5.4 WATER SOURCE -- 2.5.5 WATER QUANTITY -- 2.5.6 WATER QUALITY -- 2.5.7 CROP(S) TO BE CULTIVATED -- 2.5.8 ENERGY -- 2.5.9 LABOR -- 2.5.10 CAPITAL -- 2.5.11 ECONOMIC FACTOR -- 2.5.12 ENVIRONMENTAL ASPECTS -- 2.5.13 NATIONAL POLICY AND PRIORITY -- 2.5.14 SOCIOCULTURAL ASPECTS -- 2.5.15 INSTITUTIONAL INFRASTRUCTURE -- REFERENCES -- 3 - BASIC HYDRAULIC COMPUTATIONS -- 3.1 BASIC TERMINOLOGY -- 3.1.1 CLASSIFICATION OF OPEN CHANNEL FLOW -- 3.2 CONSERVATION LAWS -- 3.2.1 LAW OF MASS CONSERVATION OR CONTINUITY EQUATION -- 3.2.2 LAW OF MOMENTUM CONSERVATION -- 3.2.2.1 Specific Force -- 3.2.3 LAW OF ENERGY CONSERVATION -- 3.2.3.1 Steady-State Flow Equation -- 3.2.3.2 Specific Energy Equation -- 3.2.3.3 Application of Specific Energy. , 3.2.3.3.1 Channel Transition -- 3.3 HYDRAULIC JUMP -- 3.3.1 ELEMENTS OF HYDRAULIC JUMP -- 3.3.1.1 Chaurasia (2003) -- 3.3.1.2 Swamee and Rathie (2004) -- 3.4 COMPUTATION OF CRITICAL DEPTH -- 3.5 UNIFORM FLOW COMPUTATION -- 3.5.1 COMPUTATION OF NORMAL DEPTH -- 3.5.1.1 Explicit Method of Computing the Normal Depth -- 3.6 GRADUALLY VARIED FLOW -- 3.6.1 CLASSIFICATION OF GRADUALLY VARIED FLOW -- 3.6.2 COMPUTATION OF GRADUALLY VARIED FLOW OR WATER LEVEL PROFILE -- 3.6.2.1 Direct Integration Method -- 3.6.2.2 Direct Step Method -- 3.6.2.3 Standard Step Method -- 3.6.2.4 Predictor-Corrector Method -- 3.7 CONCLUDING REMARKS -- REFERENCES -- FURTHER READING -- 4 - HYDROLOGIC COMPUTATIONS -- 4.1 ANALYSES OF RAINFALL DATA -- 4.1.1 OPTIMUM NUMBER OF RAIN GAUGES -- 4.1.1.1 Coefficient of Variation Technique -- 4.1.2 ESTIMATION OF AVERAGE RAINFALL -- 4.1.3 ESTIMATION OF RAINFALL TRENDS FOR CLIMATIC VARIATION: THE MANN-KENDALL TEST -- 4.2 HYDROLOGIC CYCLE -- 4.2.1 COMPONENTS OF HYDROLOGIC CYCLE AND IMPORTANT TERMINOLOGY -- 4.3 HYDROLOGIC EQUATION AND WATER BALANCE -- 4.3.1 PERIOD OF WATER-BALANCE EXERCISE -- 4.3.2 PURPOSE OF WATER BALANCE -- 4.4 ESTIMATION OF RESERVOIR INFLOW USING OBSERVED DATA -- 4.4.1 DETERMINATION OF CATCHMENT OR RESERVOIR YIELD -- 4.5 ESTIMATE OF CATCHMENT YIELD USING RAINFALL-RUNOFF MODELING -- 4.5.1 STRANGE TABLE -- 4.5.2 SIMPLE WATER-BALANCE MODEL -- 4.5.2.1 Components of SWMB -- 4.5.2.1.1 Upper Layer Water Balance -- 4.5.2.1.2 Lower Layer Water Balance -- 4.5.2.1.3 Subsurface Runoff -- 4.5.2.1.4 Surface Runoff -- 4.5.2.2 Runoff Routing -- 4.5.3 MODIFIED SCS-CN MODEL -- 4.5.3.1 Rainfall-Excess Computation -- 4.5.3.2 Soil Moisture Budgeting -- 4.5.3.3 Computation of Evapotranspiration -- 4.5.3.4 Catchment Routing -- 4.5.3.5 Baseflow Computation -- 4.6 INFLOW ESTIMATION IN MULTI-RESERVOIR CASE. , 4.6.1 RESERVOIR ROUTING: STORAGE-INDICATION METHOD -- 4.6.2 CHANNEL ROUTING -- 4.6.2.1 The Muskingum Method -- 4.6.2.1.1 Parameter Estimation of the Muskingum Method -- 4.6.2.2 The Muskingum-Cunge Method -- 4.6.2.3 Modified Muskingum-Cunge Method (Ponce and Yevjevich, 1978) -- 4.7 DESIGN-FLOOD ESTIMATION FOR FIXING THE SPILLWAY CAPACITY -- 4.7.1 UNIT HYDROGRAPH METHOD -- 4.7.1.1 Assumptions of the Unit Hydrograph -- 4.7.1.2 Derivation of Unit Hydrograph -- 4.7.1.3 Unit Duration of UH -- 4.7.1.4 Limitations of Unit Hydrograph -- 4.7.1.5 Computation of Floods From UH Using Convolution -- 4.7.1.6 Changing the Duration of UH -- 4.7.1.6.1 Principle of Superposition -- 4.7.1.6.2 S-Hydrograph Method -- 4.7.2 SYNTHETIC HYDROGRAPH METHOD -- 4.7.2.1 Snyder's Method -- 4.7.2.2 SCS Synthetic UH Method -- 4.7.2.3 Synthetic Unit Hydrograph Method of CWC -- 4.7.3 CONCEPTUAL MODELS -- 4.7.3.1 The Clark-Based IUH Model -- 4.7.3.1.1 Parameters of the Clark Model -- 4.7.3.1.1.1 Time of Concentration, tc -- 4.7.3.1.1.2 Time-Area (TA) Diagram -- 4.7.3.1.1.2.1 TA Diagram Using the DEM -- 4.7.3.1.1.2.2 Synthetic TA and TAC Curve -- 4.7.3.1.1.3 Storage Coefficient, K -- 4.7.3.1.2 Governing Equation of the Clark Model -- 4.7.3.1.2.1 Derivation of Routing Equation -- 4.7.4 DESIGN-FLOOD ESTIMATION USING FLOOD-FREQUENCY ANALYSIS -- 4.7.4.1 Components of Frequency Analysis -- 4.8 RESERVOIR SIZING -- 4.8.1 STORAGE ZONES IN A RESERVOIR -- 4.8.2 AREA-ELEVATION AND CAPACITY-ELEVATION CURVES -- 4.8.3 DETERMINATION OF RESERVOIR CAPACITY -- 4.8.3.1 Flow-Mass Curve Analysis -- 4.8.3.2 Sequent Peak Algorithm -- 4.8.3.2.1 Graphical Procedure -- 4.8.3.2.2 Analytical Procedure -- 4.8.4 RESERVOIR OPERATION -- 4.8.4.1 Standard Operating Policy -- 4.8.5 RESERVOIR RULE CURVE -- 4.9 RESERVOIR SEDIMENTATION -- 4.9.1 DIRECT MEASUREMENT OF SEDIMENT YIELD AND EXTENSION OF MEASURED DATA. , 4.9.1.1 Extension of Sediment Data -- 4.9.1.2 Estimating Sediment Yield -- 4.9.2 TRAP EFFICIENCY OF RESERVOIR -- 4.9.2.1 Brune (1953) Method -- 4.9.2.2 USDA-SCS (1983) Method -- 4.9.2.3 Churchill (1948) Method -- 4.9.3 SEDIMENT DISTRIBUTION IN RESERVOIR -- 4.9.3.1 Empirical Methods for Evaluating Sediment Distribution -- 4.9.3.1.1 Area-Increment Method -- 4.9.3.1.2 Empirical Area-Reduction Method -- 4.10 CONCLUDING REMARKS -- REFERENCES -- FURTHER READING -- 5 - ESTIMATION OF LAKE EVAPORATION AND POTENTIAL EVAPOTRANSPIRATION -- 5.1 ESTIMATION OF LAKE EVAPORATION -- 5.2 ESTIMATION OF REFERENCE CROP EVAPOTRANSPIRATION -- 5.2.1 FAO-56 AND ASCE-EWRI METHOD -- 5.2.2 HARGREAVES METHOD -- 5.3 CONCLUDING REMARKS -- REFERENCES -- 6 - ESTIMATING IRRIGATION DESIGN PARAMETERS -- 6.1 ESTIMATION OF CROP WATER REQUIREMENT -- 6.1.1 CROP GROWTH STAGE -- 6.1.2 CROP COEFFICIENTS -- 6.1.3 PRINCIPAL CROPS AND THEIR WATER REQUIREMENT AND CRITICAL STAGES -- 6.2 IRRIGATION WATER REQUIREMENT -- 6.2.1 WATER REQUIRED FOR LAND SOAKING, WRLS -- 6.2.2 WATER REQUIRED FOR LAND PREPARATION, WRLP -- 6.2.3 WATER REQUIRED FOR LEACHING, WRL -- 6.2.4 GROSS IRRIGATION WATER REQUIREMENT, GIWR -- 6.3 IRRIGATION EFFICIENCY -- 6.3.1 WATER CONVEYANCE EFFICIENCY (EC) -- 6.3.2 WATER APPLICATION EFFICIENCY (EA) -- 6.3.3 SCHEME IRRIGATION EFFICIENCY -- 6.4 IRRIGATION COMMAND AREA -- 6.4.1 IRRIGATION INTENSITY -- 6.4.2 PEAK IRRIGATION DEMAND -- 6.4.3 WATER ALLOWANCE -- 6.4.4 DUTY, DELTA, AND BASE PERIOD -- 6.4.4.1 Duty, D -- 6.4.4.2 Delta, Δ -- 6.4.4.3 Base Period, B -- 6.4.5 RELATIONSHIP BETWEEN DUTY, DELTA, AND BASE PERIOD -- 6.5 DETERMINATION OF IRRIGATED COMMAND AREA, PROJECT DUTY, DUTY AT OUTLET HEAD AND CANAL HEAD, WATER ALLOWANCE, AND CANAL CAPACITY -- REFERENCES -- FURTHER READING -- 7 - DESIGN OF IRRIGATION CANALS -- 7.1 TYPICAL CANAL GEOMETRY -- 7.2 DESIGN OF LINED CANALS. , 7.2.1 DESIGN OF THE MOST ECONOMICAL SECTION -- 7.3 DESIGN OF STABLE UNLINED CANALS USING THE REGIME THEORY -- 7.4 DESIGN OF UNLINED CANAL USING TRACTIVE FORCE APPROACH -- 7.4.1 DESIGN OF UNLINED CANAL USING KENNEDY'S THEORY -- 7.5 DETERMINING L-SECTION OF THE CANAL -- 7.6 DEVELOPMENT OF DRAW-OFF STATEMENT FOR THE CANAL -- 7.7 CONCLUDING REMARKS -- REFERENCES -- FURTHER READING -- 8 - DESIGN OF CANAL OUTLETS AND THEIR CALIBRATION -- 8.1 CLASSIFICATION OF OUTLETS -- 8.2 PERFORMANCE OF MODULE OR OUTLET -- 8.2.1 FLEXIBILITY -- 8.2.2 PROPORTIONALITY AND SETTING -- 8.2.3 SENSITIVITY -- 8.3 DESIGN OF OUTLETS: DISCHARGE THROUGH OUTLETS -- 8.3.1 NONMODULAR OUTLET -- 8.3.2 SEMIMODULAR OUTLET -- 8.3.2.1 Pipe Outlet Discharging Freely Into the Water Course -- 8.3.2.2 Open Flume Outlet -- 8.3.2.3 Adjustable Orifice Semimodules -- 8.4 CALIBRATION OF OUTLET -- 8.5 CONCLUDING REMARKS -- REFERENCES -- FURTHER READING -- 9 - CANAL ARCHITECTURE -- 9.1 CANAL CLASSIFICATION -- 9.1.1 CLASSIFICATION ACCORDING TO FUNCTION OF THE CANAL -- 9.1.2 CLASSIFICATION ACCORDING TO ALIGNMENT -- 9.1.3 CLASSIFICATION ACCORDING TO NATURE OF SOURCE AND SUPPLY -- 9.1.4 CLASSIFICATION ACCORDING TO DISCHARGE AND RELATIVE IMPORTANCE -- 9.2 COMMAND AREA SURVEY -- 9.2.1 SURVEY MAPS FOR INITIAL PLANNING -- 9.2.2 SURVEY MAPS FOR DETAILED PLANNING -- 9.3 CANAL ALIGNMENT -- 9.3.1 IMPORTANT POINTS FOR CANAL ALIGNMENT -- 9.4 MARKING AND FINALIZATION OF AREA PROPOSED TO BE IRRIGATED BY EACH CHANNEL -- 9.5 DESIGN OF CANAL -- 9.6 CONCLUDING REMARKS -- REFERENCES -- FURTHER READING -- 10 - IRRIGATION METHODS -- 10.1 METHODS OF IRRIGATION -- 10.1.1 BASIN IRRIGATION -- 10.1.2 FURROW IRRIGATION -- 10.1.3 BORDER IRRIGATION -- 10.1.4 SPRINKLER IRRIGATION -- 10.1.5 DRIP IRRIGATION -- 10.2 FACTORS AFFECTING THE SELECTION OF IRRIGATION METHOD -- 10.3 LAYOUT OF BASIN IRRIGATION. , 10.4 LAYOUT FOR FURROW IRRIGATION.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 72 (1992), S. 4148-4155 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Conduction current in the phosphor layer of ZnS:Mn ac thin film electroluminescent (ACTFEL) display device was measured as a function of the amplitude and the rise time of the bipolar voltage pulses: electric field in the phosphor was also determined. It was found that the clamping field of an ac thin film electroluminescent device is not a single-valued device characteristic. The clamping field depended upon the rise time of the applied voltage pulse increasing in value as the rise time became smaller. These data were interpreted in terms of a nonideal breakdown of the insulator-phosphor interface and a time delay involved in the emission of electrons from this interface. To account for the nonideality in the interface breakdown the ac equivalent circuit of the ACTFEL device was modified by including a voltage-dependent resistor in parallel with the phosphor capacitance. The phosphor current measurements, transferred charge measurements and tunneling current calculations indicate that in the nonhysteretic ZnS:Mn devices under investigation, impact ionization in the phosphor layer, if present at all, leads to relatively small carrier multiplication factors.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 70 (1991), S. 1811-1819 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Current flow through the phosphor layer of ac thin film electroluminescent display devices has been analyzed. It is shown that the traditional capacitive bridge technique for measuring the time dependence of phosphor conduction current [iLP(t)] can yield inaccurate results, especially when the multiplication factor of [(CI + Cp)/CI] is not used, and the phosphor layer has bulk space charge; CI and Cp are insulator and phosphor layer capacitances, respectively. A new method for the measurement of iLP(t) has been developed. It is more accurate and is applicable even when the bulk charge in the phosphor layer is not negligible. The new method was applied to the study of ZnS:Mn ac thin-film electroluminescent (ACTFEL) devices excited by voltage pulses of three different slew rates. iLP(t) measured by the new method was compared against the bridge current (ibridge). Electric field and displacement current in the phosphor were calculated. Transferred charge computed by integrating iLP and ibridge over half cycle was compared against the polarization charge obtained from the Q–V curve of the device.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 40 (2004), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : Drawing an analogy between the popular Soil Conservation Service curve number (SCS-CN) method based infiltration and metal sorption processes, a new partitioning curve number (PCN) approach is suggested for partitioning of heavy metals into dissolved and particulate bound forms in urban snowmelt, rainfall/runoff, and river flow environments. The parameters, the potential maximum desorption, ψ, and the PCN analogous to the SCS-CN parameters S and CN, respectively, are introduced. Under the condition of snowmelt, PCN (or ψ) is found to generally rely on temperature, relative humidity, pH, and chloride content; during a rainstorm, ψ is found to depend on the alkalinity and the pH of the rainwater; and in the river flow situation, PCN is found to generally depend on the temperature, pH, and chloride content. The advantage of using PCN instead of the widely used partitioning parameter, Kd, is found to lie in the PCN's efficacy to distinguish the adsorption (or sorption) behavior of metals in the above snowmelt, rainfall/runoff, and river flow situations, analogous to the hydrological behavior of watersheds.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 22 (1986), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : A linear two-parameter relation in log space between volume and peak of direct runoff was established and verified on 134 basins in the United States, Australia, Greece and Italy. The intercept of this log relation was found to be strongly correlated with such basic characteristics as drainage area, channel slope and channel length; more than 86 percent of variance was explained. The log volume-log peak relation can be used to explain linearity or nonlinearity of drainage basins, estimate peak discharge from data-scarce basins, identify hydrologically similar or dissimilar basins, estimate sediment yield from upland areas, and construct unit hydrographs and unit sediment graphs for ungaged basins.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 11 (1975), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : This study presents generalized and special forms of hydraulic solutions of surface water lag time, as conceptualized by Overton (1970), for the converging overland flow. It is shown that these solutions can be used to estimate lag time from physically measurable information on a given watershed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 23 (1987), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : The parameters of the extreme value type 1 distribution were estimated for 55 annual flood data sets by seven methods. These are the methods of (1) moments, (2) probability weighted moments, (3) mixed moments, (4) maximum likelihood estimation, (5) incomplete means, (6) principle of maximum entropy, and (7) least squares. The method of maximum likelihood estimation was found to be the best and the method of incomplete means the worst. The differences between the methods of principle of maximum entropy, probability weighted moments, moments, and least squares were only minor. The difference between these methods and the method of maximum likelihood was not pronounced.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 29 (1993), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : A comparative study of five popular frequency distributions and three parameter estimation methods was conducted by using 92 Louisiana rainfall data sets. Computed results showed that the log-Pearson type 3 (LPEAR3) distribution was the most appropriate probability distribution for the Louisiana rainfall data. Furthermore, the method of moments was found to be the best estimation method for the LPEAR3 distribution based on descriptive performance indices. A first-order error analysis was performed on the parameters of the LPEAR3 distribution. Computed results showed that the predicted quantiles of the LPEAR3 distribution were most sensitive to the population mean and relatively insensitive to the coefficient of the skewness of the distribution.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 23 (1987), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : The principle of maximum entropy (POME) was used to derive an alternative method for parameter estimation for the three parameter lognormal (TPLN) distribution. Six sets of annual peak discharge data were used to evaluate this method and compare it with the methods of moments and maximum likelihood estimation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 21 (1985), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: The principle of maximum entropy (POME) was used to derive the two-parameter gamma distribution used frequently in synthesis of instantaneous or finite-period unit hydrographs. The POME yielded the minimally prejudiced gamma distribution by maximizing the entropy subject to two appropriate constraints which were the mean of real values and the mean of the logarithms of real values of the variable. It provided a unique method for parameter estimation. Experimental data were used to compare this method with the methods of moments, cumulants, maximum likelihood estimation, and least squares.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...