GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Geophysical Union  (5)
  • Copernicus Publications on behalf of the European Geosciences Union  (1)
  • EGU - Copernicus  (1)
  • Egu-Copernicus  (1)
  • 1
    Publication Date: 2021-02-17
    Description: Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottomup estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 TgCH4 yr􀀀1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 TgCH4 yr􀀀1 or 60% is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 TgCH4 yr􀀀1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 TgCH4 yr􀀀1 larger than our estimate for the previous decade (2000–2009), and 24 TgCH4 yr􀀀1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30% larger global emissions (737 TgCH4 yr􀀀1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions ( 65% of the global budget, 〈30 N) compared to mid-latitudes ( 30 %, 30–60 N) and high northern latitudes ( 4 %, 60–90 N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters. Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 TgCH4 yr􀀀1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 TgCH4 yr􀀀1 by 8 TgCH4 yr􀀀1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5% compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning.
    Description: Published
    Description: 1561–1623
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): D05313, doi:10.1029/2005JD006198.
    Description: We have estimated the emission of carbon (C) and carbon-containing trace gases including CO2, CO, CH4, and NMHC (nonmethane hydrocarbons) from forest fires in China for the time period from 1950 to 2000 by using a combination of remote sensing, forest fire inventory, and terrestrial ecosystem modeling. Our results suggest that mean annual carbon emission from forest fires in China is about 11.31 Tg per year, ranging from a minimum level of 8.55 Tg per year to a maximum level of 13.9 Tg per year. This amount of carbon emission is resulted from the atmospheric emissions of four trace gases as follows: (1) 40.66 Tg CO2 with a range from 29.21 to 47.53 Tg, (2) 2.71 Tg CO with a range from 1.48 to 4.30 Tg, (3) 0.112 Tg CH4 with a range from 0.06 to 0.2 Tg, and (4) 0.113 Tg NMHC with a range from 0.05 to 0.19 Tg. Our study indicates that fire-induced carbon emissions show substantial interannual and decadal variations before 1980 but have remained relatively low and stable since 1980 because of the application of fire suppression. Large spatial variation in fire-induced carbon emissions exists due to the spatial variability of climate, forest types, and fire regimes.
    Description: This work has been supported by NASA Interdisciplinary Science Program (NNG04GM39C), China’s Ministry of Science and Technology (MOST) 973 Program (2002CB412500), Chinese Academy of Sciences ODS Program, and NSFC International Cooperative Program (40128005).
    Keywords: Biomass burning ; Carbon emission ; China ; Forest fire ; Trace gases
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): G02011, doi:10.1029/2010JG001393.
    Description: China's terrestrial ecosystems have been recognized as an atmospheric CO2 sink; however, it is uncertain whether this sink can alleviate global warming given the fluxes of CH4 and N2O. In this study, we used a process-based ecosystem model driven by multiple environmental factors to examine the net warming potential resulting from net exchanges of CO2, CH4, and N2O between China's terrestrial ecosystems and the atmosphere during 1961–2005. In the past 45 years, China's terrestrial ecosystems were found to sequestrate CO2 at a rate of 179.3 Tg C yr−1 with a 95% confidence range of (62.0 Tg C yr−1, 264.9 Tg C yr−1) while emitting CH4 and N2O at rates of 8.3 Tg C yr−1 with a 95% confidence range of (3.3 Tg C yr−1, 12.4 Tg C yr−1) and 0.6 Tg N yr−1 with a 95% confidence range of (0.2 Tg N yr−1, 1.1 Tg N yr−1), respectively. When translated into global warming potential, it is highly possible that China's terrestrial ecosystems mitigated global climate warming at a rate of 96.9 Tg CO2eq yr−1 (1 Tg = 1012 g), substantially varying from a source of 766.8 Tg CO2eq yr−1 in 1997 to a sink of 705.2 Tg CO2eq yr−1 in 2002. The southeast and northeast of China slightly contributed to global climate warming; while the northwest, north, and southwest of China imposed cooling effects on the climate system. Paddy land, followed by natural wetland and dry cropland, was the largest contributor to national warming potential; forest, followed by woodland and grassland, played the most significant role in alleviating climate warming. Our simulated results indicate that CH4 and N2O emissions offset approximately 84.8% of terrestrial CO2 sink in China during 1961–2005. This study suggests that the relieving effects of China's terrestrial ecosystems on climate warming through sequestering CO2 might be gradually offset by increasing N2O emission, in combination with CH4 emission.
    Description: This study has been supported by NASA LCLUC Program (NNX08AL73G_S01) , NASA IDS Program (NNG04GM39C), and China’s Ministry of Science and Technology (MOST) 973 Program (2002CB412500).
    Keywords: Carbon dioxide ; China ; Global warming potential ; Methane ; Nitrous oxide
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/msword
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): D22S09, doi:10.1029/2007JD008521.
    Description: We investigated the potential effects of elevated ozone (O3) along with climate variability, increasing CO2, and land use change on net primary productivity (NPP) and carbon storage in China's terrestrial ecosystems for the period 1961–2000 with a process-based Dynamic Land Ecosystem Model (DLEM) forced by the gridded data of historical tropospheric O3 and other environmental factors. The simulated results showed that elevated O3 could result in a mean 4.5% reduction in NPP and 0.9% reduction in total carbon storage nationwide from 1961 to 2000. The reduction of carbon storage varied from 0.1 Tg C to 312 Tg C (a decreased rate ranging from 0.2% to 6.9%) among plant functional types. The effects of tropospheric O3 on NPP were strongest in east-central China. Significant reductions in NPP occurred in northeastern and central China where a large proportion of cropland is distributed. The O3 effects on carbon fluxes and storage are dependent upon other environmental factors. Therefore direct and indirect effects of O3, as well as interactive effects with other environmental factors, should be taken into account in order to accurately assess the regional carbon budget in China. The results showed that the adverse influences of increasing O3 concentration across China on NPP could be an important disturbance factor on carbon storage in the near future, and the improvement of air quality in China could enhance the capability of China's terrestrial ecosystems to sequester more atmospheric CO2. Our estimation of O3 impacts on NPP and carbon storage in China, however, must be used with caution because of the limitation of historical tropospheric O3 data and other uncertainties associated with model parameters and field experiments.
    Description: This research is funded by NASA Interdisciplinary Science Program (NNG04GM39C).
    Keywords: Air pollution ; Carbon storage ; China ; Climate change ; Net primary productivity ; Tropospheric ozone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 32 (2005): L02405, doi:10.1029/2004GL021649.
    Description: Land-cover changes in China are being powered by demand for food for its growing population and by the nation's transition from a largely rural society to one in which more than half of its people are expected to live in cities within two decades. Here we use an analysis of remotely sensed data gathered between 1990 and 2000, to map the magnitude and pattern of changes such as the conversion of grasslands and forests to croplands and the loss of croplands to urban expansion. With high-resolution (30 m) imagery from Landsat TM for the entire country, we show that between 1990 and 2000 the cropland area increased by 2.99 million hectares and urban areas increased by 0.82 million hectares. In northern China, large areas of woodlands, grasslands and wetlands were converted to croplands, while in southern China large areas of croplands were converted to urban areas. The land-cover products presented here give the Chinese government and international community, for the first time, an unambiguous understanding of the degree to which the nation's landscape is being altered. Documentation of these changes in a reliable and spatially explicit way forms the foundation for management of China's environment over the coming decades.
    Description: This work has been supported by the Key Project of National Science Foundation of China (90202002), Ministry of Science and Technology (MOST) 973 Program (2002CB412500), the Key Knowledge Innovation Project of the Chinese Academy of Sciences K2CX2-308), NASA Interdisciplinary Science Program (NNG04GM39C), National Science Foundation of China (40128005).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 25 (2011): GB1007, doi:10.1029/2010GB003838.
    Description: The magnitude, spatial, and temporal patterns of the terrestrial carbon sink and the underlying mechanisms remain uncertain and need to be investigated. China is important in determining the global carbon balance in terms of both carbon emission and carbon uptake. Of particular importance to climate-change policy and carbon management is the ability to evaluate the relative contributions of multiple environmental factors to net carbon source and sink in China's terrestrial ecosystems. Here the effects of multiple environmental factors (climate, atmospheric CO2, ozone pollution, nitrogen deposition, nitrogen fertilizer application, and land cover/land use change) on net carbon balance in terrestrial ecosystems of China for the period 1961–2005 were modeled with newly developed, detailed historical information of these changes. For this period, results from two models indicated a mean land sink of 0.21 Pg C per year, with a multimodel range from 0.18 to 0.24 Pg C per year. The models' results are consistent with field observations and national inventory data and provide insights into the biogeochemical mechanisms responsible for the carbon sink in China's land ecosystems. In the simulations, nitrogen deposition and fertilizer applications together accounted for 61 percent of the net carbon storage in China's land ecosystems in recent decades, with atmospheric CO2 increases and land use also functioning to stimulate carbon storage. The size of the modeled carbon sink over the period 1961–2005 was reduced by both ozone pollution and climate change. The modeled carbon sink in response to per unit nitrogen deposition shows a leveling off or a decline in some areas in recent years, although the nitrogen input levels have continued to increase.
    Description: This study has been supported by NASA IDS Program (NNG04GM39C), NASA LCLUC Pr o g ram (NNX08AL73G_S01), and China’s Ministry of Science and Technology (MOST) 973 Program (2002CB412500).
    Keywords: China ; Terrestrial carbon sink ; Ecosystem model
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Format: text/plain
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth System Science Data 10 (2018): 405-448, doi:10.5194/essd-10-405-2018.
    Description: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the high fossil emissions and the small SLAND consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.0 % (range of 0.8 to 3.0 %) based on national emissions projections for China, USA, and India, and projections of gross domestic product (GDP) corrected for recent changes in the carbon intensity of the economy for the rest of the world. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016, 2015b, a, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017 (GCP, 2017).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-12
    Description: Knowledge of the spatial distribution of the fluxes of greenhouse gases (GHGs) and their temporal variability as well as flux attribution to natural and anthropogenic processes is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement and to inform its global stocktake. This study provides a consolidated synthesis of CH4 and N2O emissions using bottom-up (BU) and top-down (TD) approaches for the European Union and UK (EU27 + UK) and updates earlier syntheses (Petrescu et al., 2020, 2021). The work integrates updated emission inventory data, process-based model results, data-driven sector model results and inverse modeling estimates, and it extends the previous period of 1990–2017 to 2019. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported by parties under the United Nations Framework Convention on Climate Change (UNFCCC) in 2021. Uncertainties in NGHGIs, as reported to the UNFCCC by the EU and its member states, are also included in the synthesis. Variations in estimates produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), arise from diverse sources including within-model uncertainty related to parameterization as well as structural differences between models. By comparing NGHGIs with other approaches, the activities included are a key source of bias between estimates, e.g., anthropogenic and natural fluxes, which in atmospheric inversions are sensitive to the prior geospatial distribution of emissions. For CH4 emissions, over the updated 2015–2019 period, which covers a sufficiently robust number of overlapping estimates, and most importantly the NGHGIs, the anthropogenic BU approaches are directly comparable, accounting for mean emissions of 20.5 Tg CH4 yr−1 (EDGARv6.0, last year 2018) and 18.4 Tg CH4 yr−1 (GAINS, last year 2015), close to the NGHGI estimates of 17.5±2.1 Tg CH4 yr−1. TD inversion estimates give higher emission estimates, as they also detect natural emissions. Over the same period, high-resolution regional TD inversions report a mean emission of 34 Tg CH4 yr−1. Coarser-resolution global-scale TD inversions result in emission estimates of 23 and 24 Tg CH4 yr−1 inferred from GOSAT and surface (SURF) network atmospheric measurements, respectively. The magnitude of natural peatland and mineral soil emissions from the JSBACH–HIMMELI model, natural rivers, lake and reservoir emissions, geological sources, and biomass burning together could account for the gap between NGHGI and inversions and account for 8 Tg CH4 yr−1. For N2O emissions, over the 2015–2019 period, both BU products (EDGARv6.0 and GAINS) report a mean value of anthropogenic emissions of 0.9 Tg N2O yr−1, close to the NGHGI data (0.8±55 % Tg N2O yr−1). Over the same period, the mean of TD global and regional inversions was 1.4 Tg N2O yr−1 (excluding TOMCAT, which reported no data). The TD and BU comparison method defined in this study can be operationalized for future annual updates for the calculation of CH4 and N2O budgets at the national and EU27 + UK scales. Future comparability will be enhanced with further steps involving analysis at finer temporal resolutions and estimation of emissions over intra-annual timescales, which is of great importance for CH4 and N2O, and may help identify sector contributions to divergence between prior and posterior estimates at the annual and/or inter-annual scale. Even if currently comparison between CH4 and N2O inversion estimates and NGHGIs is highly uncertain because of the large spread in the inversion results, TD inversions inferred from atmospheric observations represent the most independent data against which inventory totals can be compared. With anticipated improvements in atmospheric modeling and observations, as well as modeling of natural fluxes, TD inversions may arguably emerge as the most powerful tool for verifying emission inventories for CH4, N2O and other GHGs.
    Description: Published
    Description: 1197–1268
    Description: OSA2: Evoluzione climatica: effetti e loro mitigazione
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...