GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-03-06
    Description: Any use of observational data for data assimilation requires adequate information of their representativeness in space and time. This is particularly important for sparse, non-synoptic data, which comprise the bulk of oceanic in situ observations in the Arctic. To quantify spatial and temporal scales of temperature and salinity variations, we estimate the autocorrelation function and associated decorrelation scales for the Amerasian Basin of the Arctic Ocean. For this purpose, we compile historical measurements from 1980 to 2015. Assuming spatial and temporal homogeneity of the decorrelation scale in the basin interior (abyssal plain area), we calculate autocorrelations as a function of spatial distance and temporal lag. The examination of the functional form of autocorrelation in each depth range reveals that the autocorrelation is well described by a Gaussian function in space and time. We derive decorrelation scales of 150–200 km in space and 100–300 days in time. These scales are directly applicable to quantify the representation error, which is essential for use of ocean in situ measurements in data assimilation. We also describe how the estimated autocorrelation function and decorrelation scale should be applied for cost function calculation in a data assimilation system.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-09
    Description: Ice-platelet clusters modify the heat and mass balance of sea ice near Antarctic ice shelves and provide a unique habitat for ice-associated organisms. The amount and distribution of these ice crystals below the solid sea ice provide insight into melt rates and circulation regimes in the ice-shelf cavities, which are difficult to observe directly. However, little is known about the circum-Antarctic volume of the sub-sea-ice platelet layer, because observations have mostly been limited to point measurements. In this study, we present a new application of multi-frequency electromagnetic (EM) induction sounding to quantify platelet-layer properties. Combining in situ data with the theoretical response yields a bulk platelet-layer conductivity of 1154 +/- 271 mSm–1 and ice-volume fractions of 0.29–0.43. Calibration routines and uncertainties are discussed in detail to facilitate future studies. Our results suggest that multi-frequency EM induction sounding is a promising method to efficiently map platelet-layer volume on a larger scale than has previously been feasible.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-12-03
    Description: Basal melt of ice shelves may lead to an accumulation of disc-shaped ice platelets underneath nearby sea ice, to form a sub-ice platelet layer. Here we present the seasonal cycle of sea ice attached to the Ekström Ice Shelf, Antarctica, and the underlying platelet layer in 2012. Ice platelets emerged from the cavity and interacted with the fast-ice cover of Atka Bay as early as June. Episodic accumulations throughout winter and spring led to an average platelet-layer thickness of 4m by December 2012, with local maxima of up to 10 m. The additional buoyancy partly prevented surface flooding and snow-ice formation, despite a thick snow cover. Subsequent thinning of the platelet layer from December onwards was associated with an inflow of warm surface water. The combination of model studies with observed fast-ice thickness revealed an average ice-volume fraction in the platelet layer of 0.25+-0.1. We found that nearly half of the combined solid sea-ice and ice-platelet volume in this area is generated by heat transfer to the ocean rather than to the atmosphere. The total ice-platelet volume underlying Atka Bay fast ice was equivalent to more than one-fifth of the annual basal melt volume under the Ekström Ice Shelf.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3Journal of Geophysical Research: Oceans, American Geophysical Union, 120, pp. 1703-1724
    Publication Date: 2019-12-03
    Description: Ice shelves strongly interact with coastal Antarctic sea ice and the associated ecosystem by creating conditions favorable to the formation of a sub-ice platelet layer. The close investigation of this phenomenon and its seasonal evolution remains a challenge due to logistical constraints and a lack of suitable methodology. In this study, we characterize the seasonal cycle of Antarctic fast ice adjacent to the Ekstr€om Ice Shelf in the eastern Weddell Sea. We used a thermistor chain with the additional ability to record the temperature response induced by cyclic heating of resistors embedded in the chain. Vertical sea-ice temperature and heating profiles obtained daily between November 2012 and February 2014 were analyzed to determine sea-ice and snow evolution, and to calculate the basal energy budget. The residual heat flux translated into an ice-volume fraction in the platelet layer of 0.18+-0.09, which we reproduced by a independent model simulation and agrees with earlier results. Manual drillings revealed an average annual platelet-layer thickness increase of at least 4 m, and an annual maximum thickness of 10 m beneath second-year sea ice. The oceanic contribution dominated the total sea-ice production during the study, effectively accounting for up to 70% of second-year sea-ice growth. In summer, an oceanic heat flux of 21 Wm-2 led to a partial thinning of the platelet layer. Our results further show that the active heating method, in contrast to the acoustic sounding approach, is well suited to derive the fast-ice mass balance in regions influenced by ocean/ice-shelf interaction, as it allows subdiurnal monitoring of the platelet-layer thickness.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Ocean Science, COPERNICUS GESELLSCHAFT MBH, 9(4), pp. 609-630, ISSN: 1812-0784
    Publication Date: 2019-07-16
    Description: Two types of optimization methods were applied to a parameter optimization problem in a coupled ocean--sea ice model of the Arctic, and applicability and efficiency of the respective methods were examined. One optimization utilizes a finite difference (FD) method based on a traditional gradient descent approach, while the other adopts a micro-genetic algorithm (\unit{\mu}GA) as an example of a stochastic approach. The opt\imizations were performed by minimizing a cost function composed of model--data misfit of ice concentration, ice drift velocity and ice thickness. A series of optimizations were conducted that differ in the model formulation (``smoothed code'' versus standard code) with respect to the FD method and in the population size and number of possibilities with respect to the \unit{\mu}GA method. The FD method fails to estimate optimal parameters due to the ill-shaped nature of the cost function caused by the strong non-linearity of the system, whereas the genetic algorithms can effectively estimate near optimal parameters. The results of the study indicate that the sophisticated stochastic approach (\unit{\mu}GA) is of practical use for parameter optimization of a coupled ocean--sea ice model with a medium-sized horizontal resolution of 50\,km\,$\times$\,50\,km as used in this study.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3Geophysical Research Letters, American Geophysical Union, 39(2), ISSN: 0094-8276
    Publication Date: 2019-07-17
    Description: An atmospheric general circulation model driven with the observed 2007 extreme Arctic sea surface temperatures and sea ice concentrations responds with higher surface air temperature over northern Siberia and the Eastern Arctic Ocean (+3 K), increased heat uptake of the ocean in summer (+40 W/m2) and increased oceanic heat losses in fall (60 W/m2) compared to a climatological scenario. A pronounced low sea level pressure anomaly over the Eastern Arctic (200 Pa) reinforces a sea level pressure dipole over the Arctic that has been observed to become an increasingly important feature of the Arctic atmospheric circulation in summer. The anomalous pressure distribution contributes to sea ice transport from the Eastern Arctic and is likely to reinforce the original sea ice extent anomaly. The results thus support assessments of observational data over recent years that sea ice loss may feed back onto the atmospheric circulation in the northern hemisphere. The resulting late summer / early fall (JAS) atmospheric anomalies are very robust; they appear in virtually all of the 40 realizations of the experiment. However, we find no significant continuation of the atmospheric signal into the winter as has been suggested based on atmospheric observational data.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...