GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • COPERNICUS GESELLSCHAFT MBH  (3)
  • Alfred-Wegener-Institut für Polar- und Meeresforschung  (1)
  • EGU  (1)
  • 1
    facet.materialart.
    Unknown
    Alfred-Wegener-Institut für Polar- und Meeresforschung
    In:  In: ARCTIC '98: The Expedition ARK-XIV/1a of RV Polarstern in 1998. , ed. by Jokat, W. Berichte zur Polarforschung = Reports on Polar Research, 308 . Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven, pp. 30-75.
    Publication Date: 2019-09-23
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-09-14
    Description: Particle fluxes at the Cape Verde Ocean Observatory (CVOO) in the eastern tropical North Atlantic for the period December 2009 until May 2011 are discussed based on bathypelagic sediment trap time-series data collected at 1290 and 3439m water depth. The typically oligotrophic particle flux pattern with weak seasonality is modified by the appearance of a highly productive and low oxygen (minimum concentration below 2 μmol kg-1 at 40m depth) anticyclonic modewater eddy (ACME) in winter 2010. The eddy passage was accompanied by unusually high mass fluxes of up to 151 mgm-2 d-1, lasting from December 2009 to May 2010. Distinct biogenic silica (BSi) and organic carbon flux peaks of ~15 and 13.3 mgm-2 d-1, respectively, were observed in February–March 2010 when the eddy approached the CVOO. The flux of the lithogenic component, mostly mineral dust, was well correlated with that of organic carbon, in particular in the deep trap samples, suggesting a tight coupling. The lithogenic ballasting obviously resulted in high particle settling rates and, thus, a fast transfer of epi-/mesopelagic signatures to the bathypelagic traps. We suspect that the two- to three-fold increase in particle fluxes with depth as well as the tight coupling of mineral dust and organic carbon in the deep trap samples might be explained by particle focusing processes within the deeper part of the eddy. Molar C :N ratios of organic matter during the ACME passage were around 18 and 25 for the upper and lower trap samples, respectively. This suggests that some productivity under nutrient (nitrate) limitation occurred in the euphotic zone of the eddy in the beginning of 2010 or that a local nitrogen recycling took place. The d15N record showed a decrease from 5.21 to 3.11‰ from January to March 2010, while the organic carbon and nitrogen fluxes increased. The causes of enhanced sedimentation from the eddy in February/March 2010 remain elusive, but nutrient depletion and/or an increased availability of dust as a ballast mineral for organic-rich aggregates might have contributed. Rapid remineralisation of sinking organic-rich particles could have contributed to oxygen depletion at shallow depth. Although the eddy formed in the West African coastal area in summer 2009, no indications of coastal flux signatures (e.g. from diatoms) were found in the sediment trap samples, confirming the assumption that the suboxia developed within the eddy en route. However, we could not detect biomarkers indicative of the presence of anammox (anaerobic ammonia oxidation) bacteria or green sulfur bacteria thriving in photic zone suboxia/hypoxia, i.e. ladderane fatty acids and isorenieratene derivatives, respectively. This could indicate that suboxic conditions in the eddy had recently developed and/or the respective bacterial stocks had not yet reached detection thresholds. Another explanation is that the fast-sinking organic-rich particles produced in the surface layer did not interact with bacteria from the suboxic zone below. Carbonate fluxes dropped from ~52 to 21.4 mgm-2 d-1 from January to February 2010, respectively, mainly due to reduced contribution of shallow-dwelling planktonic foraminifera and pteropods. The deep-dwelling foraminifera Globorotalia menardii, however, showed a major flux peak in February 2010, most probably due to the suboxia/hypoxia. The low oxygen conditions forced at least some zooplankton to reduce diel vertical migration. Reduced “flux feeding” by zooplankton in the epipelagic could have contributed to the enhanced fluxes of organic materials to the bathypelagic traps during the eddy passage. Further studies are required on eddy-induced particle production and preservation processes and particle focusing.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-05-20
    Description: The Amazon River transports large amounts of terrestrial organic carbon (OCterr/ from the Andean and Amazon neotropical forests to the Atlantic Ocean. In order to compare the biogeochemical characteristics of OCterr in the fluvial sediments from the Amazon drainage basin and in the adjacent marine sediments, we analysed riverbed sediments from the Amazon mainstream and its main tributaries as well as marine surface sediments from the Amazon shelf and fan for total organic carbon (TOC) content, organic carbon isotopic composition (δ13CTOC/, and lignin phenol compositions. TOC and lignin content exhibit positive correlations with Al = Si ratios (indicative of the sediment grain size) implying that the grain size of sediment discharged by the Amazon River plays an important role in the preservation of TOC and leads to preferential preservation of lignin phenols in fine particles. Depleted δ13CTOC values (-26.1 to -29.9 ‰) in the main tributaries consistently correspond with the dominance of C3 vegetation. Ratios of syringyl to vanillyl (S = V) and cinnamyl to vanillyl (C = V) lignin phenols suggest that non-woody angiosperm tissues are the dominant source of lignin in the Amazon basin. Although the Amazon basin hosts a rich diversity of vascular plant types, distinct regional lignin compositions are not observed. In the marine sediments, the distribution of δ13CTOC and 38 (sum of eight lignin phenols in organic carbon (OC), expressed as mg/100 mg OC) values implies that OCterr discharged by the Amazon River is transported north-westward by the North Brazil Current and mostly deposited on the inner shelf. The lignin compositions in offshore sediments under the influence of the Amazon plume are consistent with the riverbed samples suggesting that processing of OCterr during offshore transport does not change the encoded source information. Therefore, the lignin compositions preserved in these offshore sediments can reliably reflect the vegetation in the Amazon River catchment. In sediments from the Amazon fan, low lignin content, relatively depleted δ13CTOC values and high (Ad = Al)V ratios indicating highly degraded lignin imply that a significant fraction of the deposited OCterr is derived from petrogenic (sourced from ancient rocks) sources.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-04-24
    Description: The Lena River in central Siberia is one of the major pathways translocating terrestrial organic matter (OM) from its vast catchment area to the coastal zone of the Laptev Sea and the Arctic Ocean. The permafrost soils of its far south-stretching catchment, which store huge amounts of OM, will most likely respond differently to climate warming and remobilize previously frozen OM with distinct properties specific for the source vegetation and soil. To characterize the material discharged by the Lena River, we analyzed the lignin phenol composition in total suspended matter (TSM) from surface water collected in spring and summer, surface sediments from Buor Khaya Bay along with soils from the Lena Delta's first (Holocene) and third terraces (Pleistocene ice complex), and plant samples. Our results show that lignin-derived cinnamyl : vanillyl (C / V) and syringyl : vanillyl (S / V) ratios are 〉 0.14 and 0.25, respectively, in TSM and surface sediments, whereas in delta soils they are 〉 0.16 and 〉 0.51, respectively. These lignin compositions are consistent with significant inputs of organic matter from non-woody angiosperm sources mixed with organic matter derived from woody gymnosperm sources. We applied a simple linear mixing model based on the C / V and S / V ratios, and the results indicate the organic matter in delta TSM samples and Buor Khaya Bay surface sediments contain comparable contributions from gymnosperm material, which is primarily derived from the taiga forests south of the delta, and angiosperm material typical for tundra vegetation. Considering the small catchment area covered by tundra (~ 12%), the input is substantial and tundra-derived OM input is likely to increase in a warming Arctic. The similar and high acid to aldehyde ratios of vanillyl and syringyl (Ad / AlV, S) in Lena Delta summer TSM (〉 0.7 and 〉 0.5, respectively) and Buor Khaya Bay surface sediments (〉 1.0 and 〉 0.9, respectively) suggest that the OM is highly degraded and Lena River summer TSM could be a possible source of the surface sediments. The Ad / AlV, S ratios of the first and third delta terraces were generally lower (mean ratios 〉 0.4 and 〉 0.4, respectively) than summer TSM and surface sediments. This implies that TSM contains additional contributions from a more degraded OM source (southern catchment and/or finer more degraded particle size). Alternatively, OM degradation on land after permafrost thawing and subaqueously during transport and sedimentation could be considerable. Despite the high natural heterogeneity of OM stored in delta soils and exported by the Lena River, the catchment-characteristic vegetation is reflected by the lignin biomarker composition. Climate-warming-related changes in the Lena River catchment may be detectable in changing lignin biomarker composition and diagenetic alteration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-03-04
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...