GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (6)
  • Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research  (3)
  • Copernicus Publications  (2)
  • 1
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. We analyze the sensitivity of the oceanic thermohaline circulation (THC) regarding perturbations in fresh water flux for a range of coupled oceanic general circulation – atmospheric energy balance models. The energy balance model (EBM) predicts surface air temperature and fresh water flux and contains the feedbacks due to meridional transports of sensible and latent heat. In the coupled system we examine a negative perturbation in run-off into the southern ocean and analyze the role of changed atmospheric heat transports and fresh water flux. With mixed boundary conditions (fixed air temperature and fixed surface fresh water fluxes) the response is characterized by a completely different oceanic heat transport than in the reference case. On the other hand, the surface heat flux remains roughly constant when the air temperature can adjust in a model where no anomalous atmospheric transports are allowed. This gives an artificially stable system with nearly unchanged oceanic heat transport. However, if meridional heat transports in the atmosphere are included, the sensitivity of the system lies between the two extreme cases. We find that changes in fresh water flux are unimportant for the THC in the coupled system.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The dependence of results from coarse-resolution models of the North Atlantic circulation on the numerical advection algorithm is studied. In particular, the sensitivity of parameters relevant for climate simulations as e.g., meridional transport of mass and heat and main thermocline thickness is investigated. Three algorithms were considered: (a) a central difference scheme with constant values for horizontal and vertical diffusion, (b) an upstream scheme with no explicit diffusion, and (c) a flux-corrected transport (FCT) scheme with constant and strictly isopycnal diffusion. The temporal evolution of the three models on time scales of centuries is markedly different, the upstream scheme resulting in much shorter adjustment time whereas the central difference scheme is slower and controlled by vertical diffusion rather than advection. In the steady state, the main thermocline structure is much less diffusive in the FCT calculation which also has much lower heat transport. Both horizontal circulation and overturning in the meridional-vertical plane are strongest in the upstream-model. The results are discussed in terms of the effective vertical (diapycnal) mixing in the different models. A significant increase in vertical resolution would be required to eliminate the high sensitivity due to the numerical algorithms, and allow physically motivated mixing formulations to become effective.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We analyze the sensitivity of the oceanic thermohaline circulation (THC) regarding perturbations in fresh water flux for a range of coupled oceanic general circulation — atmospheric energy balance models. The energy balance model (EBM) predicts surface air temperature and fresh water flux and contains the feedbacks due to meridional transports of sensible and latent heat. In the coupled system we examine a negative perturbation in run-off into the southern ocean and analyze the role of changed atmospheric heat transports and fresh water flux. With mixed boundary conditions (fixed air temperature and fixed surface fresh water fluxes) the response is characterized by a completely different oceanic heat transport than in the reference case. On the other hand, the surface heat flux remains roughly constant when the air temperature can adjust in a model where no anomalous atmospheric transports are allowed. This gives an artificially stable system with nearly unchanged oceanic heat transport. However, if meridional heat transports in the atmosphere are included, the sensitivity of the system lies between the two extreme cases. We find that changes in fresh water flux are unimportant for the THC in the coupled system.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-03-02
    Description: The dependence of results from coarse-resolution models of the North Atlantic circulation on the numerical advection algorithm is studied. In particular, the sensitivity of parameters relevant for climate simulations as e.g., meridional transport of mass and heat and main thermocline thickness is investigated. Three algorithms were considered: (a) a central difference scheme with constant values for horizontal and vertical diffusion, (b) an upstream scheme with no explicit diffusion, and (c) a flux-corrected transport (FCT) scheme with constant and strictly isopycnal diffusion. The temporal evolution of the three models on time scales of centuries is markedly different, the upstream scheme resulting in much shorter adjustment time whereas the central difference scheme is slower and controlled by vertical diffusion rather than advection. In the steady state, the main thermocline structure is much less diffusive in the FCT calculation which also has much lower heat transport. Both horizontal circulation and overturning in the meridional-vertical plane are strongest in the upstream-model. The results are discussed in terms of the effective vertical (diapycnal) mixing in the different models. A significant increase in vertical resolution would be required to eliminate the high sensitivity due to the numerical algorithms, and allow physically motivated mixing formulations to become effective.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Springer
    In:  EPIC3Earth System Science: Bridging the Gaps between Disciplines Perspectives from a Multi-disciplinary Helmholtz Research School, SpringerBriefs in Earth System Science, Heidelberg, Springer, 138 p., pp. 42-45, ISBN: ISBN 978-3-642-32234
    Publication Date: 2019-08-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research
    In:  EPIC3Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research, 85(2), pp. 143-155, ISSN: 00322490
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Polarforschung" , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-10-17
    Description: Fram Strait is the main gateway for sea ice export out of the Arctic Ocean, and therefore observations there give insight into the composition and properties of Arctic sea ice in general and how it varies over time. A data set of ground-based and airborne electromagnetic ice thickness measurements collected during summer between 2001 and 2012 is presented here, including long transects well into the southern part of the Transpolar Drift obtained using fixed-wing aircrafts. The primary source of the surveyed sea ice leaving Fram Strait is the Laptev Sea and its age has decreased from 3 to 2 years between 1990 and 2012. The thickness data consistently also show a general thinning of sea ice for the last decade, with a decrease in modal thickness of second year and multiyear ice, and a decrease in mean thickness and fraction of ice thicker than 3 m. Local melting in the strait was investigated in two surveys performed in the downstream direction, showing a decrease in sea ice thickness of 0.19 m degree−1 latitude south of 81° N. Further north variability in ice thickness is more related to differences in age and deformation. The thickness observations were combined with ice area export estimates to calculate summer volume fluxes of sea ice. While satellite data show that monthly ice area export had positive trends since 1980 (10.9  ×  103 km2 decade−1), the summer (July and August) ice area export is low with high uncertainties. The average volume export amounts to 16.78 km3. Naturally, the volume flux estimates are limited to the period when airborne thickness surveys are available. Nevertheless, we could show that the combination of satellite data and airborne observations can be used to determine volume fluxes through Fram Strait and as such, can be used to bridge the lack of satellite-based sea ice thickness information in summer.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research
    In:  EPIC3Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research, 80(1), pp. 5-9, ISSN: 0032-2490
    Publication Date: 2019-07-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Polarforschung" , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research
    In:  EPIC3Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research, 80(1), pp. 11-16, ISSN: 0032-2490
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Polarforschung" , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Geoscientific Model Development (GMD), Copernicus Publications, 8(1), pp. 51-68
    Publication Date: 2015-01-21
    Description: Large-scale fully coupled Earth system models (ESMs) are usually applied in climate projections like the IPCC (Intergovernmental Panel on Climate Change) reports. In these models internal variability is often within the correct order of magnitude compared with the observed climate, but due to internal variability and arbitrary initial conditions they are not able to reproduce the observed timing of climate events or shifts as for instance observed in the El Niño–Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), or the Atlantic Meridional Overturning Circulation (AMOC). Additional information about the real climate history is necessary to constrain ESMs; not only to emulate the past climate, but also to introduce a potential forecast skill into these models through a proper initialisation. We attempt to do this by extending the fully coupled climate model Max Planck Institute Earth System Model (MPI-ESM) using a partial coupling technique (Modini-MPI-ESM). This method is implemented by adding reanalysis wind-field anomalies to the MPI-ESM's inherent climatological wind field when computing the surface wind stress that is used to drive the ocean and sea ice model. Using anomalies instead of the full wind field reduces potential model drifts, because of different mean climate states of the unconstrained MPI-ESM and the partially coupled Modini-MPI-ESM, that could arise if total observed wind stress was used. We apply two different reanalysis wind products (National Centers for Environmental Prediction, Climate Forecast System Reanalysis (NCEPcsfr) and ERA-Interim reanalysis (ERAI)) and analyse the skill of Modini-MPI-ESM with respect to several observed oceanic, atmospheric, and sea ice indices. We demonstrate that Modini-MPI-ESM has a significant skill over the time period 1980–2013 in reproducing historical climate fluctuations, indicating the potential of the method for initialising seasonal to decadal forecasts. Additionally, our comparison of the results achieved with the two reanalysis wind products NCEPcsfr and ERAI indicates that in general applying NCEPcsfr results in a better reconstruction of climate variability since 1980.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...