GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (2)
  • Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research  (1)
  • Frontiers  (1)
Document type
Years
  • 1
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography) | Wiley
    Publication Date: 2023-02-08
    Description: Numerical models are a suitable tool to quantify impacts of predicted climate change on complex ecosystems but are rarely used to study effects on benthic macroalgal communities. Fucus vesiculosus L. is a habitat-forming macroalga in the Baltic Sea and alarming shifts from the perennial Fucus community to annual filamentous algae are reported. We developed a box model able to simulate the seasonal growth of the Baltic Fucus-grazer-epiphyte system. This required the implementation of two state variables for Fucus biomass in units of carbon (C) and nitrogen (N). Model equations describe relevant physiological and ecological processes, such as storage of C and N assimilates by Fucus, shading effects of epiphytes or grazing by herbivores on both Fucus and epiphytes, but with species-specific rates and preferences. Parametrizations of the model equations and required initial conditions were based on measured parameters and process rates in the near-natural Kiel Outdoor Benthocosm (KOB) experiments during the Biological Impacts of Ocean Acidification project. To validate the model, we compared simulation results with observations in the KOB experiment that lasted from April 2013 until March 2014 under ambient and climate-change scenarios, that is, increased atmospheric temperature and partial pressure of carbon dioxide. The model reproduced the magnitude and seasonal cycles of Fucus growth and other processes in the KOBs over 1 yr under different scenarios. Now having established the Fucus model, it will be possible to better highlight the actual threat of climate change to the Fucus community in the shallow nearshore waters of the Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: The plea for using more “realistic,” community‐level, investigations to assess the ecological impacts of global change has recently intensified. Such experiments are typically more complex, longer, more expensive, and harder to interpret than simple organism‐level benchtop experiments. Are they worth the extra effort? Using outdoor mesocosms, we investigated the effects of ocean warming (OW) and acidification (OA), their combination (OAW), and their natural fluctuations on coastal communities of the western Baltic Sea during all four seasons. These communities are dominated by the perennial and canopy‐forming macrophyte Fucus vesiculosus—an important ecosystem engineer Baltic‐wide. We, additionally, assessed the direct response of organisms to temperature and pH in benchtop experiments, and examined how well organism‐level responses can predict community‐level responses to the dominant driver, OW. OW affected the mesocosm communities substantially stronger than acidification. OW provoked structural and functional shifts in the community that differed in strength and direction among seasons. The organism‐level response to OW matched well the community‐level response of a given species only under warm and cold thermal stress, that is, in summer and winter. In other seasons, shifts in biotic interactions masked the direct OW effects. The combination of direct OW effects and OW‐driven shifts of biotic interactions is likely to jeopardize the future of the habitat‐forming macroalga F. vesiculosus in the Baltic Sea. Furthermore, we conclude that seasonal mesocosm experiments are essential for our understanding of global change impact because they take into account the important fluctuations of abiotic and biotic pressures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research
    In:  EPIC3Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research, 81(2), pp. 77-84, ISSN: 00322490
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Polarforschung" , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-09-19
    Description: 〈jats:p〉In polar regions, the microphytobenthos has important ecological functions in shallow-water habitats, such as on top of coastal sediments. This community is dominated by benthic diatoms, which contribute significantly to primary production and biogeochemical cycling while also being an important component of polar food webs. Polar diatoms are able to cope with markedly changing light conditions and prolonged periods of darkness during the polar night in Antarctica. However, the underlying mechanisms are poorly understood. In this study, five strains of Antarctic benthic diatoms were isolated in the field, and the resulting unialgal cultures were identified as four distinct species, of which one is described as a new species, 〈jats:italic〉Planothidium wetzelii〈/jats:italic〉 sp. nov. All four species were thoroughly examined using physiological, cell biological, and biochemical methods over a fully controlled dark period of 3 months. The results showed that the utilization of storage lipids is one of the key mechanisms in Antarctic benthic diatoms to survive the polar night, although different fatty acids were involved in the investigated taxa. In all tested species, the storage lipid content declined significantly, along with an ultrastructurally observable degradation of the chloroplasts. Surprisingly, photosynthetic performance did not change significantly despite chloroplasts decreasing in thylakoid membranes and an increased number of plastoglobules. Thus, a combination of biochemical and cell biological mechanisms allows Antarctic benthic diatoms to survive the polar night.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...