GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AMER METEOROLOGICAL SOC  (14)
  • Berlin, Heidelberg : Springer Berlin Heidelberg  (1)
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg : Springer Berlin Heidelberg
    Keywords: Geography ; Oceanography ; Physical geography ; Earth Sciences ; Geography ; Oceanography ; Physical geography ; Meeresströmung ; Meeresströmung
    Description / Table of Contents: Carsten Eden
    Type of Medium: Online Resource
    Pages: Online-Ressource (XXIV, 704p. 199 illus. in color, digital)
    ISBN: 9783642234507
    Series Statement: SpringerLink
    RVK:
    Language: English
    Note: Includes bibliographical references and index , pt. 1. Fundamental laws -- pt. 2. Common approximations -- pt. 3. Ocean waves -- pt. 4. Oceanic turbulence and eddies -- pt. 5. Aspects of ocean circulation theory -- pt. 6. Appendix.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMER METEOROLOGICAL SOC
    In:  EPIC3Journal of Physical Oceanography, AMER METEOROLOGICAL SOC, 49, pp. 737-749, ISSN: 0022-3670
    Publication Date: 2019-04-01
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMER METEOROLOGICAL SOC
    In:  EPIC3Journal of Physical Oceanography, AMER METEOROLOGICAL SOC, 49, pp. 291-308, ISSN: 0022-3670
    Publication Date: 2019-04-01
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMER METEOROLOGICAL SOC
    In:  EPIC3Journal of the Atmospheric Sciences, AMER METEOROLOGICAL SOC, pp. 1-59, ISSN: 0022-4928
    Publication Date: 2020-09-17
    Description: The model Internal Wave Dissipation, Energy and Mixing (IDEMIX) presents a novel way of parameterising internal gravity waves in the atmosphere. IDEMIX is based on the spectral energy balance of the wave field and has previously been successfully developed as a model for diapycnal diffusivity, induced by internal gravity wave breaking in oceans. Applied here for the first time to atmospheric gravity waves, integration of the energy balance equation for a continuous wave field of a given spectrum, results in prognostic equations for the energy density of eastward and westward gravity waves. It includes their interaction with the mean flow, allowing for an evolving and local description of momentum flux and gravity wave drag. A saturation mechanism maintains the wave field within convective stability limits, and a closure for critical layer effects controls how much wave flux propagates from the troposphere into the middle atmosphere. Offline comparisons to a traditional parameterisation reveal increases in the wave momentum flux in the middle atmosphere due to the mean flow interaction, resulting in a greater gravity wave drag at lower altitudes. Preliminary validation against observational data show good agreement with momentum fluxes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AMER METEOROLOGICAL SOC
    In:  EPIC3Journal of Physical Oceanography, AMER METEOROLOGICAL SOC, 46, pp. 2335-2350, ISSN: 0022-3670
    Publication Date: 2016-09-19
    Description: Two surface waves can interact to produce an internal gravity wave by nonlinear resonant coupling. The process has been called spontaneous creation (SC) because it operates without internal waves being initially present. Previous studies have shown that the generated internal waves have high frequency close to the local Brunt–Väisälä frequency and wavelengths that are much larger than those of the participating surface waves, and that the spectral transfer rate of energy to the internal wave field is small compared to other generation processes. The aim of the present analysis is to provide a global map of the energy transfer into the internal wave field by surface–internal wave interaction, which is found to be about 10 23 TW in total, based on a realistic wind-sea spectrum (depending on wind speed), mixed layer depths, and stratification below the mixed layer takenfrom a state-of-the-art numericalocean model.Unlikepreviouscalculationsof the spectral transfer rate based on a vertical mode decomposition, the authors use an analytical framework that directly derives the energy flux of generated internal waves radiating downward from the mixed layer base. Since the radiated waves are of high frequency, they are trapped and dissipated in the upper ocean. The radiative flux thus feeds only a small portion of the water column, unlike in cases of wind-driven near-inertial waves that spread over the entire ocean depth before dissipating. The authors also give an estimate of the interior dis- sipation and implied vertical diffusivities due to this process. In an extended appendix, they review the modal description of the SC interaction process, completed by the corresponding counterpart, the modulation in- teraction process (MI), where a preexisting internal wave is modulated by a surface wave and interacts with another one. MI establishes a damping of the internal wave field, thus acting against SC. The authors show that SC overcomes MI for wind speeds exceeding about 10m/s.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AMER METEOROLOGICAL SOC
    In:  EPIC3Journal of Physical Oceanography, AMER METEOROLOGICAL SOC, 47, pp. 2267-2289, ISSN: 0022-3670
    Publication Date: 2017-10-12
    Description: Small-scale turbulent mixing affects large-scale ocean processes such as the global overturning circulation but remains unresolvedin ocean models. Since the breaking of internal gravity waves is a major source of this mixing, consistent parameterizations take internal wave energetics into account. The model Internal Wave Dissipation,EnergyandMixing(IDEMIX)predictstheinternalwaveenergy,dissipationrates,anddiapycnal diffusivities based on a simplification of the spectral radiation balance of the wave field and can be used as a mixing module in global numerical simulations. In this study, it is evaluated against finestructure estimates of turbulent dissipation rates derived from Argo float observations. In addition, a novel method to compute internal gravity wave energy from finescale strain information alone is presented and applied. IDEMIX well reproducesthe magnitudeandthelarge-scalevariations ofthe Argo-derived dissipationrateandenergylevel estimates. Deficiencies arise with respect to the detailed vertical structure or the spatial extent of mixing hot spots. This points toward the need to improve the forcing functions in IDEMIX, both by implementing additionalphysicaldetailandbybetterconstrainingtheprocessesalreadyincludedinthemodel.Aprominent example is the energy transfer from the mesoscale eddies to the internal gravity waves, which is identified as an essential contributor to turbulent mixing in idealized simulations but needs to be better understood through the help of numerical, analytical, and observational studies in order to be represented realistically in ocean models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AMER METEOROLOGICAL SOC
    In:  EPIC3Journal of Physical Oceanography, AMER METEOROLOGICAL SOC, 43(8), pp. 1759-1779, ISSN: 0022-3670
    Publication Date: 2019-07-16
    Description: An energetically consistent model for the diapycnal diffusivity induced by breaking of internal gravity waves is proposed and tested in local and global settings. The model [Internal Wave Dissipation, Energy and Mixing (IDEMIX)] is based on the spectral radiation balance of the wave field, reduced by integration over the wavenumber space, which yields a set of balances for energydensity variables in physical space. A further simplification results in a single partial differentialequation for the total energy density of the wave field. The flux of energy to high vertical wavenumbers is parameterized by a functional derived from the wave–wave scattering integral of resonant wave triad interactions, which also forms the basis for estimates of dissipation rates and related diffusivities of ADCP and hydrography fine-structure data. In the current version of IDEMIX,thewaveenergyisforcedbywind-drivennear-inertialmotionsandbaroclinictides,radiatingwaves from the respectiveboundarylayers at the surfaceand the bottom into the ocean interior. The model predicts plausible magnitudes and three-dimensional structures of internal wave energy, dissipation rates, and dia- pycnal diffusivities in rough agreement to observational estimates. IDEMIX is ready for use as a mixing module in ocean circulation models and can be extended with more spectral components.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AMER METEOROLOGICAL SOC
    In:  EPIC3Journal of Physical Oceanography, AMER METEOROLOGICAL SOC, ISSN: 0022-3670
    Publication Date: 2017-06-12
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AMER METEOROLOGICAL SOC
    In:  EPIC3Journal of Physical Oceanography, AMER METEOROLOGICAL SOC, ISSN: 0022-3670
    Publication Date: 2017-06-12
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AMER METEOROLOGICAL SOC
    In:  EPIC3Journal of Physical Oceanography, AMER METEOROLOGICAL SOC, 41, pp. 2242-2258, ISSN: 0022-3670
    Publication Date: 2019-07-16
    Description: Simple idealized layered models and primitive equation models show that the meridional gradient of the zonally averaged pressure has no direct relation with the meridional flow. This demonstrates a contradiction in an often-used parameterization in zonally averaged models. The failure of this parameterization reflects the inconsistency between the model of Stommel and Arons and the box model of Stommel, as previously pointed out by Straub. A new closure is proposed. The ocean is divided in two dynamically different regimes: a narrow western boundary layer and an interior ocean; zonally averaged quantities over these regions are considered. In the averaged equations three unknowns appear: the interior zonal pressure difference Dpi, the zonal pressure difference Dpb of the boundary layer, and the zonal velocity ud at the interface between the two regions. Here Dpi is parameterized using a frictionless vorticity balance, Dpb by the difference of the mean pressure in the interior and western boundary, and ud by the mean zonal velocity of the western boundary layer. Zonally resolved models, a layer model, and a primitive equation model validate the new parameterization by comparing with the respective zonally averaged counterparts. It turns out that the zonally averaged models reproduce well the buoyancy distribution and the meridional flow in the zonally resolved model versions with respect to the mean and time changes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...