GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-09-18
    Description: Understanding climate proxy records that preserve physical characteristics of past climate is a prerequisite to reconstruct long‐term climatic conditions. Water stable isotope ratios (δ18O) constitute a widely used proxy in ice cores to reconstruct temperature and climate. However, the original climate signal is altered between the formation of precipitation and the ice, especially in low‐accumulation areas such as the East Antarctic Plateau. Atmospheric conditions under which the isotopic signal is acquired at Aurora Basin North (ABN), East Antarctica, are characterized with the regional atmospheric model Modèle Atmosphérique Régional (MAR). The model shows that 50% of the snow is accumulated in less than 24 days/year. Snowfall occurs throughout the year and intensifies during winter, with 64% of total accumulation between April and September, leading to a cold bias of −0.86°C in temperatures above inversion compared to the annual mean of −29.7°C. Large snowfall events are associated with high‐pressure systems forcing warm oceanic air masses toward the Antarctic interior, which causes a warm bias of +2.83°C. The temperature‐δ18O relationship, assessed with the global atmospheric model ECHAM5‐wiso, is primarily constrained by the winter variability, but the observed slope is valid year‐round. Three snow δ18O records covering 2004–2014 indicate that the anomalies recorded in the ice core are attributable to the occurrence of warm winter storms bringing precipitation to ABN and support the interpretation of δ18O in this region as a marker of temperature changes related to large‐scale atmospheric conditions, particularly blocking events and variations in the Southern Annular Mode.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-20
    Description: Black carbon emitted by incomplete combustion of fossil fuels and biomass has a net warming effect in the atmosphere and reduces the albedo when deposited on ice and snow; accurate knowledge of past emissions is essential to quantify and model associated global climate forcing. Although bottom-up inventories provide historical Black Carbon emission estimates that are widely used in Earth System Models, they are poorly constrained by observations prior to the late 20th century. Here we use an objective inversion technique based on detailed atmospheric transport and deposition modeling to reconstruct 1850 to 2000 emissions from thirteen Northern Hemisphere ice-core records. We find substantial discrepancies between reconstructed Black Carbon emissions and existing bottom-up inventories which do not fully capture the complex spatial-temporal emission patterns. Our findings imply changes to existing historical Black Carbon radiative forcing estimates are necessary, with potential implications for observation-constrained climate sensitivity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...