GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-02
    Description: Through laboratory experiments we investigate inertial granular flows created by the instantaneous release of particulate columns into wide, rectangular channels. These flows are characterized by their unsteady motion, large changes of the free surface with time, and the propagation towards the free surface of an internal interface separating static and flowing regions. We present data for the time-dependent geometry of the internal interface and the upper, free surface for aspect ratios, a, in the range from 3 to 9.5 (where a=hi∕di is the ratio of the initial height to basal width of the column). The data were analyzed by two different approaches. First, by integrating under the entire internal interface we obtained data for the static area, AD, as a function of time for different a. Second, in order to characterize vertical deposition rates, we measured the thicknesses of the flowing region, hF(x,t), and the static region, hD(x,t), at fixed horizontal positions, x, and time, t, since the initiation of the experiment. We also determined detailed velocity profiles with depth at distances scaled to the final maximum runout distance to analyze the kinematic behavior of the flowing layer. In the initial free-fall phase, the temporal variation of the static area is independent of hi and scales as gdit. During the subsequent lateral spreading phase, AD(t) varies linearly with time and the nondimensional deposition rate (dAD/dt)/(gd3i)1∕2 is a linear function of a. The thickness of the interface hD(x,t) at constant x depends on a and varies linearly with time. The local deposition rate ∂hD∕∂t is not constant along the flow length. Data show that for the major part of the flow length ∂2hD/∂t∂x is constant. In the lateral spreading phase, the velocity profiles are characteristically linear with a basal exponential region, a few grains in thickness, which separates static from moving regions. The shear rate is a constant dependent on a modified initial height h̃ i as (g/h̃ i)1∕2, where h̃ i is a characteristic length scale in the system describing the fraction of the granular column actually involved in the flowing region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: An international, multidisciplinary research group is proposing the “NICA-BRIDGE” drilling project, within the framework of the International Continental Scientific Drilling Program (ICDP). The project goal is to conduct scientific drilling in Lake Nicaragua and Lake Managua (Nicaragua, Central America) to obtain long lacustrine sediment records to (a) extend the neotropical paleoclimate record back to the Pliocene, making it one of the longest continental tropical climate archives in the world, and to (b) provide geological data on the long-term complex interplay among tectonics, volcanism, sea-level dynamics, climate change, and biosphere. The lakes are the two largest in Central America, and they are located in a trench-parallel half graben that hosts the volcanic front, which developed during or prior to the Pliocene, as a consequence of subduction-related tectonic activity. The lakes are uniquely suited for multidisciplinary scientific investigation as their long, con- tinuous sediment records (several Myr) will facilitate the study of (1) terrestrial and marine basin development at the southern Central American margin, (2) alternating lacustrine and marine environments in response to tec- tonic and climatic changes, (3) the longest record of tropical climate proxies, (4) the evolution of (and transition between) the Miocene to Pliocene/Pleistocene and Pleistocene to present volcanic arcs, which were separated by slab rollback, (5) the significance of the lakes as hot spots for endemism, and (6) the Great American Biotic Interchange at this strategic location, i.e., the N–S and reverse migration of fauna after the land bridge between the Americas was established. The planned ICDP project offers an opportunity to explore these topics through continent-based seismolog- ical, volcanological, paleoclimatological, paleoecological, and paleoenvironmental studies, combined with an International Ocean Discovery Program (IODP) drill project to explore its oceanic continuation. In preparation of this drilling project, an ICDP workshop was held in Montelimar, Nicaragua, on 2–5 March 2020 to develop drilling strategies and refine scientific questions, objectives, and hypotheses. The workshop was organized and hosted by the principal investigators and the Instituto Nicaragüense de Estudios Territoriales (INETER), with funding from the ICDP. Forty-five researchers from 12 countries participated in the workshop, including representatives from ICDP. During the workshop, previous research data on the study lakes, including new recent surveys, were reviewed, and a three-phase strategy for the proposed research was developed. The aim of Phase 0 is to complement the pre-site surveys where we identified the need for further data. In Phase I, with ICDP support, we will obtain sediment cores ∼ 100 m long, which will allow us to investigate many of the scientific questions. Based on the data from those drill cores, coring locations will be identified for a future Phase II, which we envisage as a combined ICDP/IODP project to collect deep drill cores in the lakes and the offshore Sandino Basin in order to extend Phase I results to much deeper time. The Sandino Basin is the oceanic continuation of the depression in which the studied lakes are located, and complementary marine drilling will improve the understanding of the evolution of this complex margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...